首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   32篇
  2021年   6篇
  2019年   3篇
  2018年   6篇
  2017年   7篇
  2016年   10篇
  2015年   25篇
  2014年   38篇
  2013年   35篇
  2012年   43篇
  2011年   45篇
  2010年   29篇
  2009年   19篇
  2008年   38篇
  2007年   46篇
  2006年   47篇
  2005年   33篇
  2004年   47篇
  2003年   42篇
  2002年   39篇
  2001年   9篇
  2000年   6篇
  1999年   9篇
  1998年   8篇
  1997年   17篇
  1996年   10篇
  1995年   9篇
  1994年   11篇
  1993年   6篇
  1992年   15篇
  1991年   8篇
  1990年   6篇
  1989年   12篇
  1988年   7篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1975年   4篇
  1974年   2篇
  1973年   6篇
  1970年   5篇
  1969年   2篇
  1963年   2篇
排序方式: 共有768条查询结果,搜索用时 31 毫秒
121.
Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide () scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount of released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis.  相似文献   
122.
Electron spin resonance using spin-trapping is a useful technique for detecting direct reactive oxygen species, such as superoxide (). However, the widely used spin trap 2,2-dimethyl-3,4-dihydro-2H-pyrrole N-oxide (DMPO) has several fundamental limitations in terms of half-life and stability. Recently, the new spin trap 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO) was developed by us. We evaluated the biological applicability of DPhPMPO to analyze in both cell-free and cellular systems. DPhPMPO had a larger rate constant for and formed more stable spin adducts for than DMPO in the xanthine/xanthine oxidase (X/XO) system. In the phorbol myristate acetate-activated neutrophil system, the detection potential of DPhPMPO for was significantly higher than that of DMPO (kDMPO = 13.95 M−1 s−1, kDPhPMPO = 42.4 M−1 s−1). These results indicated that DPhPMPO is a potentially good candidate for trapping in a biological system.  相似文献   
123.
124.
The Saccharomyces cerevisiae MNN4 gene, which is involved inmannosylphosphate transfer from GDP-mannose to N-linked oligosaccharide,has been cloned from a lambda phage containing a yeast chromosomeXI DNA fragment The MNN4 ORF encodes a protein of 1178 aminoacids. The deduced amino acid sequence shows a topology of typeII membrane proteins and has a unique repeated sequence of lysineand glutamic acid at the C-terminus. Disruption and overexpressionof MNN4 led to a decrease and increase, respectively, of themannosylphosphate content in cell wall mannans prepared fromboth mnn4 and wild type strains. A dramatic decrease of mannosylphosphateoccurs in  相似文献   
125.
126.
MethodsMice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups.ResultsLevels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice.ConclusionThese results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.  相似文献   
127.
Summary The proximate cholesterol precursors lathosterol, 7-dehydrocholesterol and desmosterol supported the growth of NS-1 and X63 mouse myeloma cells. These cells and X63.653 cells are cholesterol auxotrophs, yet each was able to convert [3H]lathosterol to [3H]cholesterol. These results are consistent with the conclusion that cholesterol auxotrophy in these myeloma cells is due to a deficiency in 3-ketosteroid reductase activity. The steroid hormones testosterone, progesserone and hydrocortisone could not replace cholesterol as a medium supplement. These results provide a greater understanding of the cholesterol auxotrophy characteristic of cell lines clonally-derived from the MOPC 21 myeloma tumor, and they provide a rational basis for the use of sterols in defined culture medium for mouse myeloma cells. This work was supported by National Institute of Health grants CA40294 and CA37589 to G. H. Sato and by a grant from RJR nabisco Inc. Editor's Statement These results help identify the defect in myeloma cells leading to cholesterol auxotrophy. The use of these cells in hybridoma derivation adds practical utility to a detailed appreciation of cholesterol metabolism in these cultures.  相似文献   
128.
129.
A series of tetrahydroisoquinoline derivatives were designed, synthesized, and evaluated for their potential as novel orally efficacious retinoic acid receptor-related orphan receptor-gamma t (RORγt) inverse agonists for the treatment of Th17-driven autoimmune diseases. We carried out cyclization of the phenylglycinamide core by structure-based drug design and successfully identified a tetrahydroisoquinoline carboxylic acid derivative 14 with good biochemical binding and cellular reporter activity. Interestingly, the combination of a carboxylic acid tether and a central fused bicyclic ring was crucial for optimizing PK properties, and the compound 14 showed significantly improved PK profile. Successive optimization of the carboxylate tether led to the discovery of compound 15 with increased inverse agonistic activity and an excellent PK profile. Oral treatment of mice with compound 15 robustly and dose-dependently inhibited IL-17A production in an IL23-induced gene expression assay.  相似文献   
130.
The adaptor protein Shc was prepared as glutathione S-transferase fusion proteins (GST–Shc) and used as in vitro substrate for c-Src. Since phosphotyrosine-binding domain of Shc has been shown to bind phosphatidyl-inositol 4,5-bisphosphate (PtdIns(4,5)P2) [Zhou et al. (1995) Nature 378, 584–592], effect of PtdIns(4,5)P2 on the phosphorylation of GST–Shc by c-Src was examined. PtdIns(4,5)P2 stimulated the phosphorylation of GST–Shc without any effect on the c-Src activity as judged by both its autophosphorylation and phosphorylation of exogenous substrate, Cdc2 peptide. On the other hand, phosphatidylserine, phosphatidic acid, phosphatidylinositol, and phosphatidylinositol 4-phosphate but not phosphatidylcholine stimulated the c-Src activity itself. Km for GST–Shc in the presence of 1 μM PtdIns(4,5)P2 was calculated to be 90 nM. The PtdIns(4,5)P2-dependent phosphorylation of GST–Shc was inhibited by a GST–fusion protein containing the phosphotyrosine-binding domain of Shc. These results suggest that PtdIns(4,5)P2 can act as a regulator of phosphorylation of Shc by c-Src through its binding to Shc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号