首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   6篇
  111篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   9篇
  2007年   2篇
  2006年   8篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   2篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   4篇
  1965年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
41.
Monosodium urate (MSU) crystals are known to induce gouty arthritis, but also evoke specific cell immunity and work as an adjuvant by delivering several kinds of binding proteins, including idiotypic cancer vaccine peptides into dendritic cells. To investigate the potency of MSU crystals as a cancer vaccine carrier in vivo, this preclinical study examined whether intradermal injection of MSU crystals was safe for healthy adults. Subjects comprised 12 volunteers. Four different dose levels of MSU crystals were injected as follows: 2 μg (n = 3), 20 μg (n = 3), 200 μg (n = 3), or 2000 μg (n = 3). At 24 hours after administration, documented erythema was seen around the injection site in a dose-dependent manner, particularly in all adults with MSU dose ≥200 μg. However, redness was limited to the grade I level of the National Cancer Institute toxicity criteria. Serum uric acid levels did not show any change before and after injection. Moreover, neither gouty arthritis nor tophi developed in any volunteers, indicating that intradermal injection of MSU crystals did not induce systemic inflammation at the doses that evoked significant local inflammation. These findings suggest that intradermal injection of MSU crystals is fundamentally safe and should be made available for clinical trials using MSU-crystal-conjugated cancer vaccines.  相似文献   
42.
BubR1 acetylation is essential in mitosis. Mice heterozygous for the acetylation-deficient BubR1 allele (K243R/+) spontaneously developed tumors with massive chromosome missegregations. K243R/+ mouse embryonic fibroblasts (MEFs) exhibited a weakened spindle assembly checkpoint (SAC) with shortened mitotic timing. The generation of the SAC signal was intact, as Mad2 localization to the unattached kinetochore (KT) was unaltered; however, because of the premature degradation of K243R-BubR1, the mitotic checkpoint complex disassociated prematurely in the nocodazole-treated condition, suggesting that maintenance of the SAC is compromised. BubR1 acetylation was also required to counteract excessive Aurora B activity at the KT for stable chromosome–spindle attachments. The association of acetylation-deficient BubR1 with PP2A-B56α phosphatase was reduced, and the phosphorylated Ndc80 at the KT was elevated in K243R/+ MEFs. In relation, there was a marked increase of micronuclei and p53 mutation was frequently detected in primary tumors of K243R/+ mice. Collectively, the combined effects of failure in chromosome–spindle attachment and weakened SAC cause genetic instability and cancer in K243R/+ mice.  相似文献   
43.
44.
Inai Y  Ousaka N  Ookouchi Y 《Biopolymers》2006,82(5):471-481
Noncovalent chiral domino effect (NCDE) has been proposed as terminal-specific interaction upon a 3(10)-helical peptide chain, of which the helix sense is manipulated by an external chiral stimulus (mainly amino acid derivatives) operating on the N-terminus (Inai, Y., et al. J Am Chem Soc 2000, 122, 11731-11732; ibid., 2002, 124, 2466-2473; ibid., 2003, 125, 8151-8162). We have investigated here a helix-sense induction in an optically inactive N-terminal-free nonapeptide (1) through the screening of several peptide species that differ in chiral sequence, chain length, and C-terminal group. Helix-sense induction in peptide 1 depends largely on both the C-terminal chirality and carboxyl group in the external peptide, in which N-carbonyl-blocked amino acids, "monopeptide acids," should be the minimum requirement for effective induction. N-Protected mono- to tetrapeptides of L-Leu residue commonly induce a right-handed helix. NMR study and theoretical computation reveal that the N-terminal segment of peptide 1 binds the N-protected dipeptide molecule through multipoint coordination to induce a right-handed helix preferentially. The present findings not only will improve our understanding of the chiral roles in peptide or protein helical termini, but also might demonstrate potential applications to chirality-responsive materials based on peptide helical fragments.  相似文献   
45.
Comparative X-ray diffraction studies, in conjunction with infrared absorption spectroscopy, were performed on chromatophores isolated from various purple photosynthetic bacteria in order to achieve a better understanding of the molecular structure of the photosynthetic unit. Purple non-sulfur bacteria used were Rhodospirillum rubrum, Rhodospirillum molischianum, Rhodopseudomonas sphaeroides, and Rhodopseudomonas palustris. Chromatophores of Chromatium vinosum, as a typical example of purple sulfur bacteria, were also investigated. The results were as follows. Distinct equatorial X-ray diffraction patterns were obtained from chromatophores of all the bacteria examined. They showed diffuse, continuous diffraction patterns having several maxima, and the patterns are evidently distinguished from those of either crystalline or amorphous material. The pattern indicates that the photosynthetic unit in the chromatophore has a highly organized molecular structure in the plane of the membrane. Bacteria whose major photosynthetic pigment is bacteriochlorophyll alpha can be categorized in three groups from the viewpoint of near infrared absorption spectra. X-ray diffraction patterns are also grouped accordingly, although the differences are minimal and the patterns display common features. In other words, the bacteriochlorophyll forms, which are bacteriochlorophyll-protein complexes exhibiting different near-infrared absorption spectra, show different X-ray patterns: the molecular structure of photosynthetic units is closely related to the state of pigment in each complex, although the "X-ray" molecular structure is mainly concerned with the arrangement of constituent protein molecules at the present resolution, whereas the "spectroscopic" structure reflects the local environment of pigment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
46.
Selective cell death by apoptosis plays important roles in organogenesis. Apoptotic cells are observed in the developmental and homeostatic processes of several ectodermal organs, such as hairs, feathers, and mammary glands. In chick feather development, apoptotic events have been observed during feather morphogenesis, but have not been investigated during early feather bud formation. Previously, we have reported a method for generating feather buds on a bioengineered skin from dissociated skin epithelial and mesenchymal cells in three-dimensional culture. During the development of the bioengineered skin, epithelial cavity formation by apoptosis was observed in the epithelial tissue. In this study, we examined the selective epithelial cell death during the bioengineered skin development. Histological analyses suggest that the selective epithelial cell death in the bioengineered skin was induced by caspase-3-related apoptosis. The formation of feather buds of the bioengineered skin was disturbed by the treatment with a pan-caspase inhibitor. The pan-caspase inhibitor treatment suppressed the rearrangement of the epithelial layer and the formation of dermal condensation, which are thought to be essential step to form feather buds. The suppression of the formation of feather buds on the pan-caspase inhibitor-treated skin was partially compensated by the addition of a GSK-3β inhibitor, which activates Wnt/β-catenin signaling. These results suggest that the epithelial cell death is involved in the formation of feather buds of the bioengineered skin. These observations also suggest that caspase activities and Wnt/β-catenin signaling may contribute to the formation of epithelial and mesenchymal components in the bioengineered skin.  相似文献   
47.
48.
Kawai M  Nagai U  Inai Y  Yamamura H  Akasaka R  Takagi S  Miwa Y  Taga T 《Biopolymers》2005,80(2-3):186-198
Rules relating the stereochemistry of N-Dnp (Dnp: 2,4-dinitrophenyl) derivatives of alpha-amino acids and peptides and the sign of the Cotton effects at the longest wavelength band (ca. 400 nm) are surveyed. Some new data and insights concerning the CD spectra of Dnp-alpha-amino acids are included: i.e., the spectra of Dnp derivatives as the composite of the corresponding o-nitrophenyl and p-nitrophenyl derivatives; the crystal structure of Dnp-I-phenylalanine and its solid-state CD spectra; the CD spectra of Dnp-alpha-amino acids containing sulfur atom on their side chains; and the theoretical approach to the CD spectra using molecular orbital method-based calculation. Conformational analyses of cyclic and linear peptides by the CD spectra of their Dnp derivatives are also discussed.  相似文献   
49.
50.
A Merkel cell‐neurite complex is a touch receptor composed of specialized epithelial cells named Merkel cells and peripheral sensory nerves in the skin. Merkel cells are found in touch‐sensitive skin components including whisker follicles. The nerve fibers that innervate Merkel cells of a whisker follicle extend from the maxillary branch of the trigeminal ganglion. Whiskers as a sensory organ attribute to the complicated architecture of the Merkel cell‐neurite complex, and therefore it is intriguing how the structure is formed. However, observing the dynamic process of the formation of a Merkel cell‐neurite complex in whiskers during embryonic development is still difficult. In this study, we tried to develop an organotypic co‐culture method of a whisker pad and a trigeminal ganglion explant to form the Merkel cell‐neurite complex in vitro. We initially developed two distinct culture methods of a single whisker row and a trigeminal ganglion explant, and then combined them. By dissecting and cultivating a single row from a whisker pad, the morphogenesis of whisker follicles could be observed under a microscope. After the co‐cultivation of the whisker row with a trigeminal ganglion explant, a Merkel cell‐neurite complex composed of Merkel cells, which were positive for both cytokeratin 8 and SOX2, Neurofilament‐H‐positive trigeminal nerve fibers and Schwann cells expressing Nestin, SOX2 and SOX10 was observed via immunohistochemical analyses. These results suggest that the process for the formation of a Merkel cell‐neurite complex can be observed under a microscope using our organotypic co‐culture method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号