首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7100篇
  免费   502篇
  7602篇
  2021年   56篇
  2019年   62篇
  2018年   71篇
  2017年   57篇
  2016年   90篇
  2015年   147篇
  2014年   162篇
  2013年   353篇
  2012年   312篇
  2011年   321篇
  2010年   177篇
  2009年   174篇
  2008年   327篇
  2007年   295篇
  2006年   335篇
  2005年   318篇
  2004年   309篇
  2003年   311篇
  2002年   308篇
  2001年   297篇
  2000年   293篇
  1999年   236篇
  1998年   94篇
  1997年   84篇
  1996年   70篇
  1995年   70篇
  1994年   63篇
  1993年   78篇
  1992年   163篇
  1991年   172篇
  1990年   157篇
  1989年   148篇
  1988年   146篇
  1987年   126篇
  1986年   103篇
  1985年   82篇
  1984年   105篇
  1983年   84篇
  1982年   49篇
  1981年   47篇
  1980年   58篇
  1979年   96篇
  1978年   69篇
  1977年   75篇
  1976年   41篇
  1975年   41篇
  1974年   43篇
  1973年   45篇
  1972年   43篇
  1968年   34篇
排序方式: 共有7602条查询结果,搜索用时 9 毫秒
11.
12.
The present study shows that Langerhans cells can be differentiated from Interdigitating cells at the light microscopic level. Superficial lymph nodes and skin taken from necropsies and the lymph nodes of dermatopathic lymphadenopathy (DPL) were used for this experiment. Sections of lymph node and skin were embedded using the acetone, methyl benzoate and xylene (AMeX) method and dendritic cells were immunostained with anti S-100 protein antibody (S-100, and OKT-6 (CD1a) using the restaining method. Langerhans cells in the skin were positive for both CD1a and S-100. Dendritic cells positive for both CD1a and S-100, and dendritic cells positive for S-100, but not for CD1a were observed in superficial lymph nodes. In normal superficial lymph nodes, there were more interdigitating cells than Langerhans cells. The majority of the dendritic cells in the DPL were Langerhans cells. We conclude that the S-100 and CD1a positive cells are Langerhans cells, and the S-100 positive-CD1a negative cells are interdigitating cells.  相似文献   
13.
Monodeiodination of T4 to T3 and rT3 in the intact cells of dog renal tubuli and glomeruli was investigated. The tubuli and glomeruli were obtained by a sieve method. T4 (2 micrograms/ml) was incubated in Tris-HCl buffer, pH 7.5, with renal cells (180 micrograms protein/ml) and 5 mM DTT for 1 h at 37 degrees C and the T3 and rT3 generated during incubation were measured by specific radioimmunoassays. In order of decreasing activity, dog renal cortical tubuli, cortical homogenate, glomeruli and medullary tubuli were capable of converting T4 to T3. Net rT3 production from T4 in cortical tubuli was also greater than that in cortical homogenate. The conversion of T4 to T3 and also to rT3 in cortical tubuli was enzymatic in nature, since the reactions showed dependence on time and protein concentration; instability to heating; temperature and pH optimum. The production of T3 and rT3 from T4 was maximum at pH 6.5 and at pH 9.5, respectively, indicating that two different enzymic systems, a 5- and a 5'-monodeiodinase, might be involved in the deiodination of the tyrosyl and the phenolic ring of T4 in dog kidney.  相似文献   
14.
15.
16.
Two different types of oligosaccharides, designated type 1 and 2 carbohydrate residues, are present on the contact site A molecule, an 80-kDa glycoprotein involved in the formation of EDTA-stable cell adhesion during cell aggregation in Dictyostelium discoideum. The first precursor detected by pulse-chase labeling with [35S]methionine was a 68-kDa glycoprotein carrying type 1 carbohydrate. Conversion of the precursor into the 80-kDa form occurred simultaneously with the addition of type 2 carbohydrate. Tunicamycin inhibited type 1 glycosylation more efficiently than type 2 glycosylation. The first precursor detected in tunicamycin-treated cells by pulse-chase labeling was a 53-kDa protein lacking both carbohydrates, which was converted through addition of type 2 carbohydrate into a 66-kDa final product. Labeling of intact cells indicated that this 66-kDa glycoprotein is transported to the cell surface. Prolonged treatment with tunicamycin resulted in the accumulation within the cells of the 53-kDa precursor with no detectable exposure of this protein on the cell surface. It is concluded that type 1 carbohydrate, which is cotranslationally added in N-glycosidic linkages, is neither required for transport of the protein to the Golgi apparatus nor for type 2 glycosylation or protection of the protein against proteolytic degradation. Incapability of tunicamycin-treated cells of forming EDTA-stable cell contacts suggests a role for type 1 carbohydrate in cell adhesion. Type 2 carbohydrate is added posttranslationally. It is required in the absence of type 1 glycosylation for transport of the protein to the cell surface.  相似文献   
17.
Metabolism of 32-hydroxy-24,25-dihydrolanosterol (lanost-8-ene-3 beta,32-diol), a posturated intermediate of the 14 alpha-demethylation (removal of C-32) of 24,25-dihydrolanosterol (lanost-8-en-3 beta-ol), by a reconstituted system consisting of yeast cytochrome P-450 which catalyzes lanosterol 14 alpha-demethylation (cytochrome P-45014DM) (Yoshida, Y., and Aoyama, Y. (1984) J. Biol. Chem. 259, 1655-1660 and Aoyama, Y., Yoshida, Y., and Sato, R. (1984) J. Biol. Chem. 259, 1661-1666) and NADPH-cytochrome P-450 reductase was studied. The reconstituted system converted both 32-hydroxy-24,25-dihydrolanosterol and 24,25-dihydrolanosterol to 4,4-dimethyl-5 alpha-cholesta-8,14-dien-3 beta-ol, the 14 alpha-demethylated product of the latter. The metabolism of these compounds was inhibited by a low concentration of ketoconazole which is a potent cytochrome P-45014DM inhibitor. Affinity of cytochrome P-45014DM for 32-hydroxy-24,25-dihydrolanosterol was about 20 times higher than for 24,25-dihydrolanosterol and the cytochrome metabolized the former about 4 times faster than the latter under the experimental conditions. Spectral analysis suggested that the 32-hydroxyl group of 32-hydroxy-24,25-dihydrolanosterol interacted with the heme iron of the oxidized cytochrome and this interaction might support the high affinity of this compound for the cytochrome. These lines of evidence indicate that 32-hydroxy-24,25-dihydrolanosterol is the intermediate of the 14 alpha-demethylation of 24,25-dihydrolanosterol by cytochrome P-45014DM. It is also clear that the cytochrome catalyzes further metabolism of the 32-hydroxylated intermediate to the 14 alpha-demethylated product with higher efficiency than the 32-hydroxylation of the substrate. Cytochrome P-45014DM is thus classified as lanosterol C14-C32 lyase.  相似文献   
18.
Dermatan sulfate proteoglycan chains were detected in tissue sections treated with chondroitin B-lyase (0.01 units/ml) in 20 mM Tris-HCl (pH 8.0) for 1 hr, followed by staining with antibody 9A2 specific for unsaturated uronic acid coupled to N-acetylgalactosamine-4 sulfate. In contrast, after treatment with chondroitin B-lyase, no positive staining was observed with antibodies 3B3 and 1B5 which react to the unsaturated uronic acid coupled to N-acetylgalactosamine 6-sulfate and unsaturated uronic acid coupled to N-acetylgalactosamine, respectively. The distribution of dermatan sulfate thus revealed was confirmed by comparison with that found by monoclonal antibody 6B6 which reacts with small proteoglycans carrying dermatan sulfate side chains. The localization of positive staining in fibrous connective tissues was almost identical with these two procedures.  相似文献   
19.
Two kinds of low molecular weight kininogen (termed LK1 and LK2) were isolated from pooled plasma of guinea pigs. When polyclonal antisera raised against the individual proteins were used, immunological cross-reactions were observed between LK1 and high molecular weight kininogen (HK), but not either between LK1 and LK2 or between LK2 and HK. After tissue injury, plasma level of LK1 doubled while those of LK2 and HK remained relatively unchanged.  相似文献   
20.
Physiological state control of fermentation processes   总被引:1,自引:0,他引:1  
In this article a novel approach to the control of fermentation processes is introduced. A "physiological state control approach" has been developed using the concept of representing fermentation processes through the current physiological state of the cell culture. No conventional mathematical model is required for the synthesis of such a control system.The main idea is based on the fact that during batch, feed-batch, or even continuous cultivation the physiological characteristics of the cell population, jointly expressed by the term "physiological state", are not constant but rather variable, which is reflected in expected or unexpected changes in the behavior of the control plant, and which requires flexible alteration of the current control strategy. The proposed approach involves decomposition of the physiological state space into several subspaces called "physiological situations." In every physiological situation the cell population expresses stable characteristics, and therefore an invariant control strategy can be effectively applied. The on-line functions of the physiological state control system consist of the calculation of physiological state variables, determination of the current physiological situation as an element of a previously defined set of known physiological situations, switching of the relevant control strategy, and calculation of the control action. Attention is focused on the synthesis of the novel and nonstandard part of the control system - the algorithm for online recognition of the current physiological state. To this end an effective approach, based on artificial intelligence methods, particularly fuzzy sets theory and pattern recognition theory, was developed. Its practical realization is demonstrated using data from a continuous fermentation process for single cell protein production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号