首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   23篇
  402篇
  2024年   1篇
  2023年   1篇
  2021年   5篇
  2020年   9篇
  2019年   6篇
  2018年   9篇
  2017年   10篇
  2016年   13篇
  2015年   20篇
  2014年   21篇
  2013年   26篇
  2012年   33篇
  2011年   33篇
  2010年   33篇
  2009年   19篇
  2008年   30篇
  2007年   30篇
  2006年   19篇
  2005年   19篇
  2004年   19篇
  2003年   12篇
  2002年   14篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有402条查询结果,搜索用时 12 毫秒
321.
Thermococcus onnurineus NA1 is a hyperthermophilic archaeon that can be used for the screening of thermophilic enzymes. Previously, we characterized the metabolic enzymes of the cytosolic proteome by two-dimensional electrophoresis/tandem mass spectrometry (2-DE/MS-MS). In this study, we identified a subset of hyperthermostable proteins in the cytosolic proteome using enrichment by in vitro heat treatment and protein identification. After heat treatment at 100°C for 2 h, 13 and 149 proteins were identified from the soluble proteome subset by 2-DE/MS-MS and 1-DE/MS-MS analysis, respectively. Representative proteins included intracellular protease I, thioredoxin reductase, triosephosphate isomerase, putative hydroperoxide reductase, proteasome, and translation initiation factors. Intracellular protease, deblocking aminopeptidases, and fructose-1,6-bisphosphatase were overexpressed in Escherichia coli and biological activity above 85°C was confirmed. The folding transition temperature (Tm) of identified proteins was analyzed using the in silico prediction program TargetStar. The proteins enriched with the heat treatment have higher Tm than the homologous proteins from mesophilic strains. These results suggested that the heat-stable protein set of hyperthermophilic T. onnurineus NA1 can be effectively fractionated and enriched by in vitro heat treatment.  相似文献   
322.
323.
A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.  相似文献   
324.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH2 to PGE2 and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC50 of 1.1 μM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 μM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors.  相似文献   
325.
Although subcellular localization and substrate specificity of thioredoxin isoforms have been characterized, there is little information on the specific functions of mtype plant thioredoxins or their interaction targets. Here, we describe the functional characterization of an Oryza sativa thioredoxin m (OsTrxm). We undertook yeast twohybrid screening using OsTrxm as a bait and found three interaction proteins, Pex14 and two Pex5 variants. Furthermore, two cysteines of OsTrxm were sufficient for the interaction between OsTrxm and these peroxisome proteins. To verify whether OsTrxm and the target proteins can be co-localized in vivo, we examined subcellular localization of OsTrxm-GFP and a peroxisomal marker RFP-SKL in Arabidopsis protoplast cells. Surprisingly, we detected OsTrxm localization in the cytosol and chloroplast. We confirmed these results by 2-D PAGE and Western blot analysis. Our results indicate that OsTrxm may play important roles in the cytoplasm for peroxisome biogenesis as well as in redox regulation of chloroplast proteins.  相似文献   
326.
Discovery of alpha-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of diabetes and the other carbohydrate mediated diseases. We have been able to identify 13 novel alpha-glucosidase inhibitors by means of a computer-aided drug design protocol involving homology modeling of the target protein and the virtual screening with docking simulations under consideration of the effects of ligand solvation in the binding free energy function. Because the newly discovered inhibitors are structurally diverse and reveal a significant potency with IC(50) values lower than 50 microM, all of them can be considered for further development by structure-activity relationship studies or de novo design methods. Structural features relevant to the interactions of the newly identified inhibitors with the active site residues of alpha-glucosidase are discussed in detail.  相似文献   
327.
Microbial engineering requires accurate information about cellular metabolic networks and a set of molecular tools that can be predictably applied to the efficient redesign of such networks. Recent advances in the field of metabolic engineering and synthetic biology, particularly the development of molecular tools for synthetic regulation in the static and dynamic control of gene expression, have increased our ability to efficiently balance the expression of genes in various biological systems. It would accelerate the creation of synthetic pathways and genetic programs capable of adapting to environmental changes in real time to perform the programmed cellular behavior. In this paper, we review current developments in the field of synthetic regulatory tools for static and dynamic control of microbial gene expression.  相似文献   
328.
Rubisco activase (Rca) facilitates the release of sugar‐phosphate inhibitors at Rubisco catalytic sites during CO2 fixation. Most plant species express two Rca isoforms, the larger Rca‐α and the shorter Rca‐β, either by alternative splicing from a single gene or expression from separate genes. The mechanism of Rubisco activation by Rca isoforms has been intensively studied in C3 plants. However, the functional role of Rca in C4 plants where Rubisco and Rca are located in a much higher [CO2] compartment is less clear. In this study, we selected four C4 bioenergy grasses and the model C4 grass setaria (Setaria viridis) to investigate the role of Rca in C4 photosynthesis. All five C4 grass species contained two Rca genes, one encoding Rca‐α and the other Rca‐β, which were positioned closely together in the genomes. A variety of abiotic stress‐related motifs were identified in the Rca‐α promoter of each grass, and while the Rca‐β gene was constantly highly expressed at ambient temperature, Rca‐α isoforms were expressed only at high temperature but never surpassed 30% of Rca‐β content. The pattern of Rca‐α induction on transition to high temperature and reduction on return to ambient temperature was the same in all five C4 grasses. In sorghum (Sorghum bicolor), sugarcane (Saccharum officinarum), and setaria, the induction rate of Rca‐α was similar to the recovery rate of photosynthesis and Rubisco activation at high temperature. This association between Rca‐α isoform expression and maintenance of Rubisco activation at high temperature suggests that Rca‐α has a functional thermo‐protective role in carbon fixation in C4 grasses by sustaining Rubisco activation at high temperature.  相似文献   
329.
Certain plant growth–promoting bacteria, such as Pseudomonas fluorescens 89B61 and Bacillus pumilus SE34, secreted high levels of indole-3-acetic acid (IAA) in tryptophan-amended medium in stationary phase as determined by chromogenic analysis and high-performance liquid chromatography. Two other growth-promoting strains, P. chlororaphis O6 and Serratia marcescens 90-166, did not produce these high levels of IAA. However, when the gacS mutant of P. chlororaphis O6 was grown in tryptophan-supplemented medium, IAA was detected in culture filtrates. IAA production by the gacS mutant in P. chlororaphis O6 was repressed in the tryptophan medium by complementation with the wild-type gacS gene. Thus, the global regulatory Gac system in P. chlororaphis O6 acts as a negative regulator of IAA production from trypophan.  相似文献   
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号