首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   22篇
  2024年   1篇
  2021年   5篇
  2020年   9篇
  2019年   6篇
  2018年   9篇
  2017年   10篇
  2016年   13篇
  2015年   20篇
  2014年   21篇
  2013年   26篇
  2012年   33篇
  2011年   33篇
  2010年   33篇
  2009年   19篇
  2008年   30篇
  2007年   30篇
  2006年   19篇
  2005年   19篇
  2004年   19篇
  2003年   12篇
  2002年   14篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有401条查询结果,搜索用时 31 毫秒
131.
Park JY  Kim S  Kim SM  Cha SH  Lim SK  Kim J 《Journal of bacteriology》2011,193(22):6393-6394
Acinetobacter baumannii is a Gram-negative bacterium causing nosocomial infections worldwide. To gain quick insight into the molecular basis of biofilm formation in A. baumannii, we determined the complete genome sequence of A. baumannii strain 1656-2, which forms sturdy biofilm and is resistant to multiple drugs.  相似文献   
132.
Auxin plays critical roles in many aspects of plant growth and development. Although a number of auxin biosynthetic pathways have been identified, their overlapping nature has prevented a clear elucidation of auxin biosynthesis. Recently, Arabidopsis (Arabidopsis thaliana) mutants with supernormal auxin phenotypes have been reported. These mutants exhibit hyperactivation of genes belonging to the YUCCA family, encoding putative flavin monooxygenase enzymes that result in increased endogenous auxin levels. Here, we report the discovery of fertile dominant Arabidopsis hypertall1-1D and hypertall1-2D (yucca6-1D, -2D) mutants that exhibit typical auxin overproduction phenotypic alterations, such as epinastic cotyledons, increased apical dominance, and curled leaves. However, unlike other auxin overproduction mutants, yucca6 plants do not display short or hairy root phenotypes and lack morphological changes under dark conditions. In addition, yucca6-1D and yucca6-2D have extremely tall (>1 m) inflorescences with extreme apical dominance and twisted cauline leaves. Microarray analyses revealed that expression of several indole-3-acetic acid-inducible genes, including Aux/IAA, SMALL AUXIN-UP RNA, and GH3, is severalfold higher in yucca6 mutants than in the wild type. Tryptophan (Trp) analog feeding experiments and catalytic activity assays with recombinant YUCCA6 indicate that YUCCA6 is involved in a Trp-dependent auxin biosynthesis pathway. YUCCA6:GREEN FLUORESCENT PROTEIN fusion protein indicates YUCCA6 protein exhibits a nonplastidial subcellular localization in an unidentified intracellular compartment. Taken together, our results identify YUCCA6 as a functional member of the YUCCA family with unique roles in growth and development.  相似文献   
133.
Reactive oxygen species (ROS) generated after exposure to hypoxia and reoxygenation (H/R) play a pivotal role in the stimulation of cell death. In this study, we explored H/R-induced cytotoxicity in human lymphocytes. Compared to cells under normoxic conditions, H/R-treated cells exhibited significantly decreased viability and increased DNA breakage. Western blotting analysis demonstrated that H/R-induced the accumulation of p53 and p63 proteins. H/R also led to the activation of caspase-3 and -9, accompanied by the cleavage of PARP (poly(ADP-ribose)polymerase). Because apoptosis is usually accompanied by ROS generation and collapse of the mitochondrial membrane potential (MMP, Deltapsi(m)), we examined ROS and MMP levels in H/R-treated lymphocytes. Cells subjected to H/R exhibited significantly increased ROS and decreased MMP, compared with normoxic cells. Taken together, these results indicate that H/R treatment of human lymphocytes induces rapid ROS generation and MMP collapse, which triggers apoptosis.  相似文献   
134.
An antifungal protein that inhibits the growth of filamentous fungal pathogens was isolated from Chinese cabbage (Brassica campestris L. ssp. pekinensis) by affinity chromatography on Affi-gel blue gel and ion exchange chromatography on CM-Sepharose. The N-terminal amino acid sequence of the protein was highly homologous to that of plant cyclophilins and consequently the protein was denoted as C-CyP. To understand the antifungal activity of C-CyP, we isolated a cDNA encoding its gene from a Chinese cabbage leaf cDNA library. The Chinese cabbage genome bears more than one C-CyP gene copy and C-CyP mRNA is highly expressed in all tissues except the seeds. Recombinant C-CyP catalyzed the cis-trans inter-conversion of the Ala-Pro bond of the substrate, which indicates this protein has peptidyl-prolyl cis-trans isomerase activity. It also inhibited the growth of several fungal pathogens.  相似文献   
135.
Choi DH  Ha JS  Lee WH  Song JK  Kim GY  Park JH  Cha HJ  Lee BJ  Park JW 《FEBS letters》2007,581(8):1649-1656
Heat shock protein (Hsp) in tumor cells has been proposed to enhance their resistance to chemotherapeutic agents. In the present study, we investigated the influence of Hsp expression on the irinotecan resistance of human colorectal cancer cells. Among eight Hsp genes tested in this study, we confirmed that the expression of Hsp27 correlated with irinotecan resistance in colorectal cancer cells. Specific inhibition of Hsp27 expression using an antisense oliogodeoxynucleotide increased the irinotecan sensitivity. On the contrary, an overexpression of Hsp27 decreased the irinotecan sensitivity in colorectal cancer cells. Elevated expression of Hsp27 decreased caspase-3 activity in colorectal cancer cells. The expression level of Hsp27 determined by immunohistochemical analysis correlated with the clinical response to irinotecan in colorectal cancer patients. Hsp27 expression levels of irinotecan-non-responder (mean staining score, 6.28; proportion of high staining score, 64.2%) were significantly higher compared to those of irinotecan-responder (mean staining score, 3.16; proportion of high staining score, 33.3%) (P for t-test=0.045). These findings suggest that Hsp27 is involved in the irinotecan resistance of colorectal cancer cells possibly by reducing caspase-3 activity.  相似文献   
136.
The cDNA of a marine fish microsomal epoxide hydrolase (mEH) gene from Mugil cephalus was cloned by rapid amplification of cDNA ends (RACE) techniques. The homology model for the mEH of M. cephalus showed a characteristic structure of α/β-hydrolase-fold main domain with a lid domain over the active site. The characteristic catalytic triad, consisting of Asp(238), His(444), and Glu(417), was highly conserved. The cloned mEH gene was expressed in Escherichia coli and the recombinant mEH exhibited (R)-preferred hydrolysis activity toward racemic styrene oxide. We obtained enantiopure (S)-styrene oxide with a high enantiopurity of more than 99% enantiomeric excess and yield of 15.4% by batch kinetic resolution of 20 mM racemic styrene oxide.  相似文献   
137.
Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process.  相似文献   
138.
Hwang JW  Choi YB  Park S  Choi CY  Lee EY 《Biodegradation》2007,18(1):91-101
A two-stage reactor system was developed for the continuous degradation of gas-phase trichloroethylene (TCE). Methylosinus trichosporium OB3b was immobilized on activated carbon in a TCE degradation reactor, trickling biofilter (TBF). The TBF was coupled with a continuous stirred tank reactor (CSTR) to allow recirculation of microbial cells from/to the TBF for the reactivation of inactivated cells during TCE degradation. The mass transfer aspect of the TBF was analyzed, and mass transfer coefficient of 3.9 h−1 was estimated. The loss of soluble methane monooxygenase (sMMO) activity was modeled based on a material balance on the CSTR and TBF, and transformation capacity (T c) was determined to be 20.2 mol mg−1. Maximum TCE degradation rate of 525 mg 1−1 d−1 was obtained and reactor has been stably operated for more than 270 days.  相似文献   
139.
Safety and regulatory issues favor increasing use of enantiopure compounds in pharmaceuticals. Enantiopure epoxides and diols are valuable intermediates in organic synthesis for the production of optically active pharmaceuticals. Enantiopure epoxide can be prepared using epoxide hydrolase (EH)-catalyzed asymmetric hydrolysis of its racemate. Enantioconvergent hydrolysis of racemic epoxides by EHs possessing complementary enantioselectivity and regioselectivity can lead to the formation of enantiopure vicinal diols with high yield. EHs are cofactor-independent and easy-to-use catalysts. EHs will attract much attention as commercial biocatalysts for the preparation of enantiopure epoxides and diols. In this paper, recent progress in molecular engineering of EHs is reviewed. Some examples and prospects of asymmetric and enantioconvergent hydrolysis reactions are discussed as supplements to molecular engineering to improve EH performance.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号