首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   61篇
  563篇
  2022年   7篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   17篇
  2015年   14篇
  2014年   16篇
  2013年   11篇
  2012年   15篇
  2011年   25篇
  2010年   17篇
  2009年   20篇
  2008年   22篇
  2007年   28篇
  2006年   18篇
  2005年   27篇
  2004年   20篇
  2003年   10篇
  2002年   18篇
  2001年   12篇
  2000年   20篇
  1999年   8篇
  1998年   12篇
  1997年   5篇
  1996年   12篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   16篇
  1991年   14篇
  1990年   13篇
  1989年   13篇
  1988年   18篇
  1987年   7篇
  1986年   5篇
  1985年   10篇
  1984年   13篇
  1983年   3篇
  1982年   6篇
  1981年   9篇
  1980年   4篇
  1979年   8篇
  1978年   7篇
  1977年   7篇
  1973年   3篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
排序方式: 共有563条查询结果,搜索用时 0 毫秒
81.
OCI-5/GPC3 is a member of the glypican family. Glypicans are heparan sulfate proteoglycans that are bound to the cell surface through a glycosyl-phosphatidylinositol anchor. It has recently been shown that the OCI-5/GPC3 gene is mutated in patients with the Simpson-Golabi-Behmel Syndrome (SGBS), an X-linked disorder characterized by pre- and postnatal overgrowth and various visceral and skeletal dysmorphisms. Some of these dysmorphisms could be the result of deficient growth inhibition or apoptosis in certain cell types during development. Here we present evidence indicating that OCI-5/GPC3 induces apoptosis in cell lines derived from mesothelioma (II14) and breast cancer (MCF-7). This induction, however, is cell line specific since it is not observed in NIH 3T3 fibroblasts or HT-29 colorectal tumor cells. We also show that the apoptosis-inducing activity in II14 and MCF-7 cells requires the anchoring of OCI-5/GPC3 to the cell membrane. The glycosaminoglycan chains, on the other hand, are not required. MCF-7 cells can be rescued from OCI-5/GPC3–induced cell death by insulin-like growth factor 2. This factor has been implicated in Beckwith-Wiedemann, an overgrowth syndrome that has many similarities with SGBS. The discovery that OCI-5/GPC3 is able to induce apoptosis in a cell line– specific manner provides an insight into the mechanism that, at least in part, is responsible for the phenotype of SGBS patients.  相似文献   
82.
The RNA products synthesized in vitro by the virion-associated RNA polymerase of purified vesicular stomatitis virus have previously been shown to contain two distinct 5′-terminal sequences. The mRNA species contain the blocked 5′-terminal G(5′)ppp(5′)A-A-C-A-G sequence and the initiated lead-in RNA segment (approximately 50 bases) contains the unblocked 5′ ppA-C-G sequence. In the present studies, using inosine 5′-triphosphate in place of GTP it is shown that RNA species as large as 14.5S contain an unblocked 5′-ppA-C-(I) sequence indicating that the GTP analogue permits synthesis of a possible precursor of viral mRNA in vitro.  相似文献   
83.
Ethidium bromide was added to cultured human leukemic bone marrow and solid tumor cells to evaluate its inhibitory effect on mitotic chromosome condensation and its possible application to high-resolution banding analysis. In most experiments ethidium bromide treatment resulted in a high proportion of mitotic cells having elongated chromosomes, without remarkable reduction in either the mitotic index or quality of metaphase chromosomes. Optimal effect on chromosome length was obtained by adding 10 micrograms/ml of ethidium bromide during the final 2 hr of culture. Because of the simplicity and reproducibility of the technique involved, ethidium bromide can be used routinely to extend the length of chromosomes for fine-banding analysis of malignant cells.  相似文献   
84.
To investigate the spontaneous frequency of occurrence of stable multidrug-resistant cells in a population of drug-sensitive cells, we exposed drug sensitive P388/S cells to daunorubicin (dnr) for 1 h, then used fluorescence-activated cell sorting based on intracellular dnr fluorescence to isolate cells within P388/S having different intracellular content of drug. One of the sort windows chosen (low dnr content sort window) isolated only P388/S cells with intracellular drug content equal to or less than that of the known multidrug-resistant subline P388/adr. This sort window constituted approximately 3% of P388/S cells with lowest dnr content. By such a procedure we were able, on one of seven attempts, to isolate and cultivate stable, highly multidrug-resistant cells (comparable to that of P388/adr) from the P388/S cells obtained from the low dnr-content sort window. Net growth of cells in culture was observed 15-20 days after sorting, indicating that of the P388/S cells collected from the low dnr-content sort window, very few were actually highly drug-resistant. On no occasion could resistant cells be cultivated from cells sorted from P388/S with higher dnr content, as would be expected if mutation to a multidrug-resistant phenotype had occurred as a result of exposure to drug. The resistant cells isolated from P388/S by sorting (called P388/LoSort) displayed low intracellular accumulation of dnr that was enhanced by verapamil, were cross-resistant to vincristine and actinomycin-D, and distinct from P388/S, possessed a 150- to 160-kD membrane species identified by Vinca alkaloid photoaffinity labeling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
85.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
86.
Based on a pharmacophore alignment on known non-competitive mGluR5 inhibitors applying 4SCan technology, a new lead series was identified and further structurally investigated. K(i)'s as low as around 100 nM were achieved.  相似文献   
87.
Experiments demonstrating the existence of receptors for iron-saturated transferrin on K562 cells are described. Binding of 125I-labelled transferrin is rapid, saturable and reversible, and can be specifically inhibited by unlabelled transferrin, but not by other proteins. The number of receptors determined by Scatchard analysis significantly decreased when K562 cells moved from the exponential to the quiescent phase of growth. Induction by hemin or sodium butyrate resulted in a marked reduction of transferrin binding. This phenomenon was due entirely to reduction in the number of receptors and was without effect on the affinity of interaction. The effect of butyrate and hemin on the number of transferrin receptors in other hematopoietic cell lines was investigated. Butyrate on the various cell lines was variable in its effect, whereas hemin constantly elicited a significant reduction in the number of transferrin receptors.  相似文献   
88.
Fifty-eight enterotoxigenic Escherichia coli (ETEC) strains, isolated from children with and without diarrhea in Sao Paulo, were examined for the presence of colonization factor antigens (CFAs) and their ability to adhere to HeLa cells. Antisera to CFA/I, the coli surface (CS) antigens CS1CS3, CS2CS3, and CS2 of CFA/II, CFA/III, and CS5CS6 and CS6 of CFA/IV were used. CFAs were identified in 43% of the ETEC strains: 40% of the strains with CFAs harbored CFA/I, 24% carried CFA/II (CS1CS3), 24% carried CFA/IV (CS6), and 12% carried CFA/IV (CS5CS6). CFAs occurred mainly among ETEC strains producing only heat-stable (ST-I) enterotoxin and in strains also producing heat-labile toxin (LT-I). No ETEC strains tested expressed CFA/III. A marked change in serotypes of ST-I-producing strains was found in Sao Paulo between 1979 and 1990. Adherence to HeLa cells was detected in 14% of the ETEC strains. All of them had a diffuse adherence pattern and produced only ST-I, and 88% carried CS6 antigen.  相似文献   
89.
Previously, a rodent cDNA encoding the third member of the Akt/PKB family of serine/threonine kinases was cloned. We have now cloned the human homolog of this cDNA, and we have used this clone to map the AKT3 gene to human chromosome 1q44 by fluorescence in situ hybridization (FISH). We have also mapped the rodent homologs of AKT3 to rat chromosome 13q24-->q26 and mouse chromosome 1H4-6 by FISH.  相似文献   
90.
125I-Transferrin binding to lymphoblastoid K562 and Daudi cells markedly increased after exposure of the cells to culture conditions that stimulated proliferation. Treatment of these cells with interferon-alpha (IFN-alpha) resulted in concurrent inhibition of cell growth and of the rise in transferrin binding. Scatchard analyses revealed that IFN reduced the number of transferrin receptors without altering the binding constant. When 125I-transferrin binding was measured using permeabilized cells, the IFN-induced reduction of binding was comparable to that observed with intact cells, indicating that IFN diminished the total number of cellular transferrin receptors. We also found that addition of IFN-alpha to phytohemagglutinin-stimulated human lymphocytes inhibited the mitogen-induced enhancement of [3H]thymidine incorporation as well as surface binding of 125I-transferrin. Our findings suggest that the decrease in transferrin receptor expression on IFN-alpha-treated cells may be one of the mechanisms responsible for the antiproliferative action of IFN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号