首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   11篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   6篇
  2008年   10篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   7篇
  2000年   7篇
  1999年   7篇
  1998年   12篇
  1997年   2篇
  1996年   4篇
  1995年   8篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
排序方式: 共有162条查询结果,搜索用时 187 毫秒
51.
The integration of low-temperature scanning-probe techniques and single-electron capacitance spectroscopy represents a powerful tool to study the electronic quantum structure of small systems - including individual atomic dopants in semiconductors. Here we present a capacitance-based method, known as Subsurface Charge Accumulation (SCA) imaging, which is capable of resolving single-electron charging while achieving sufficient spatial resolution to image individual atomic dopants. The use of a capacitance technique enables observation of subsurface features, such as dopants buried many nanometers beneath the surface of a semiconductor material1,2,3. In principle, this technique can be applied to any system to resolve electron motion below an insulating surface.As in other electric-field-sensitive scanned-probe techniques4, the lateral spatial resolution of the measurement depends in part on the radius of curvature of the probe tip. Using tips with a small radius of curvature can enable spatial resolution of a few tens of nanometers. This fine spatial resolution allows investigations of small numbers (down to one) of subsurface dopants1,2. The charge resolution depends greatly on the sensitivity of the charge detection circuitry; using high electron mobility transistors (HEMT) in such circuits at cryogenic temperatures enables a sensitivity of approximately 0.01 electrons/Hz½ at 0.3 K 5.  相似文献   
52.
53.
The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic and glycinergic synapses is controlled by the scaffold protein gephyrin and the adaptor protein collybistin. We derived new insights into the structure of collybistin and used these to design biochemical, cell biological, and genetic analyses of collybistin function. Our data define a collybistin‐based protein interaction network that controls the gephyrin content of inhibitory postsynapses. Within this network, collybistin can adopt open/active and closed/inactive conformations to act as a switchable adaptor that links gephyrin to plasma membrane phosphoinositides. This function of collybistin is regulated by binding of the adhesion protein neuroligin‐2, which stabilizes the open/active conformation of collybistin at the postsynaptic plasma membrane by competing with an intramolecular interaction in collybistin that favors the closed/inactive conformation. By linking trans‐synaptic neuroligin‐dependent adhesion and phosphoinositide signaling with gephyrin recruitment, the collybistin‐based regulatory switch mechanism represents an integrating regulatory node in the formation and function of inhibitory postsynapses.  相似文献   
54.
DNA mismatch repair is initiated by the recognition of mismatches by MutS proteins. The mechanism by which MutS searches for and recognizes mismatches and subsequently signals repair remains poorly understood. We used single-molecule analyses of atomic force microscopy images of MutS-DNA complexes, coupled with biochemical assays, to determine the distributions of conformational states, the DNA binding affinities, and the ATPase activities of wild type and two mutants of MutS, with alanine substitutions in the conserved Phe-Xaa-Glu mismatch recognition motif. We find that on homoduplex DNA, the conserved Glu, but not the Phe, facilitates MutS-induced DNA bending, whereas at mismatches, both Phe and Glu promote the formation of an unbent conformation. The data reveal an unusual role for the Phe residue in that it promotes the unbending, not bending, of DNA at mismatch sites. In addition, formation of the specific unbent MutS-DNA conformation at mismatches appears to be required for the inhibition of ATP hydrolysis by MutS that signals initiation of repair. These results provide a structural explanation for the mechanism by which MutS searches for and recognizes mismatches and for the observed phenotypes of mutants with substitutions in the Phe-Xaa-Glu motif.  相似文献   
55.

Background  

Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts.  相似文献   
56.

Background  

Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea.  相似文献   
57.
Recently the discovery of a novel 87 amino acid influenza A virus (IAV) protein, named PB1-F2, has been reported that originates from an alternative reading frame in the PB1 polymerase gene and is encoded in most of the known human IAV isolates. Using optimized protocols, full length biologically active sPB1-F2 and a number of fragments have been synthesized by following either the standard elongation SPPS method or by native chemical ligation of unprotected N- and C-terminal peptide fragments at the histidine and cysteine residues located in position 41 and 42 of the native sequence, respectively. The ligation procedure afforded the most efficient synthesis of sPB1-F2 and facilitated the generation of various mutants of sPB1-F2 from pre-synthesized peptide fragments. During the synthesis of sPB1-F2, the formation of succinimide and subsequent conversion to the piperidine derivative at the aspartic acid residue in position 23 was observed. This reaction was forestalled by applying specific modifications to the SPPS protocol. The chain-elongation SPPS protocol is optimal for producing small peptides of sPB1-F2, their derivatives and precursors for a subsequent ligation protocol, while the full length protein, mutants and labelled derivatives are more conveniently and efficiently synthesized by SPPS protocols that include native chemical ligation. The molecular identity of sPB1-F2 was confirmed by peptide mapping, mass spectrometry, N-terminal sequencing, (1)H NMR spectroscopy and Western blot analysis. The latter analysis afforded direct evidence of the inherent tendency of sPB1-F2 to undergo oligomerization, a phenomenon observed both for full length sPB1-F2 and fragments thereof, as well as for its full length viral counterpart. Our synthesis protocols open the field for multiple biological and structural studies on sPB1-F2 that, similar to the molecule expressed in an IAV context, induces apoptosis and interacts with membranes in vitro and in vivo, as shown in previous studies.  相似文献   
58.
GMDD: a database of GMO detection methods   总被引:1,自引:0,他引:1  

Background  

Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号