首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   35篇
  2024年   1篇
  2023年   3篇
  2022年   19篇
  2021年   17篇
  2020年   12篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   22篇
  2015年   35篇
  2014年   38篇
  2013年   37篇
  2012年   35篇
  2011年   32篇
  2010年   28篇
  2009年   16篇
  2008年   30篇
  2007年   24篇
  2006年   15篇
  2005年   22篇
  2004年   22篇
  2003年   11篇
  2002年   19篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   7篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1963年   1篇
排序方式: 共有544条查询结果,搜索用时 31 毫秒
491.
Ecological monitoring of streams has often focused on assessing the biotic integrity of individual benthic macroinvertebrate (BMI) communities through local measures of diversity, such as taxonomic or functional richness. However, as individual BMI communities are frequently linked by a variety of ecological processes at a regional scale, there is a need to assess biotic integrity of groups of communities at the scale of watersheds. Using 4,619 sampled communities of streambed BMIs, we investigate this question using co‐occurrence networks generated from groups of communities selected within California watersheds under different levels of stress due to upstream land use. Building on a number of arguments in theoretical ecology and network theory, we propose a framework for the assessment of the biotic integrity of watershed‐scale groupings of BMI communities using measures of their co‐occurrence network topology. We found significant correlations between stress, as described by a mean measure of upstream land use within a watershed, and topological measures of co‐occurrence networks such as network size (r = ?.81, p < 10–4), connectance (r = .31, p < 10–4), mean co‐occurrence strength (r = .25, p < 10–4), degree heterogeneity (r = ?.10, p < 10–4), and modularity (r = .11, p < 10–4). Using these five topological measures, we constructed a linear model of biotic integrity, here a composite of taxonomic and functional diversity known as the California Stream Condition Index, of groups of BMI communities within a watershed. This model can account for 66% of among‐watershed variation in the mean biotic integrity of communities. These observations imply a role for co‐occurrence networks in assessing the current status of biotic integrity for BMI communities, as well as their potential use in assessing other ecological communities.  相似文献   
492.
493.
In this paper, we discuss the potential for the use of engineering methods that were originally developed for the design of embedded computer systems, to analyse biological cell systems. For embedded systems as well as for biological cell systems, design is a feature that defines their identity. The assembly of different components in designs of both systems can vary widely. In contrast to the biology domain, the computer engineering domain has the opportunity to quickly evaluate design options and consequences of its systems by methods for computer aided design and in particular design space exploration. We argue that there are enough concrete similarities between the two systems to assume that the engineering methodology from the computer systems domain, and in particular that related to embedded systems, can be applied to the domain of cellular systems. This will help to understand the myriad of different design options cellular systems have. First we compare computer systems with cellular systems. Then, we discuss exactly what features of engineering methods could aid researchers with the analysis of cellular systems, and what benefits could be gained.  相似文献   
494.
495.
There is growing concern that global environmental change might exacerbate the ecological impacts of invasive species by increasing their per capita effects on native species. However, the mechanisms underlying such shifts in interaction strength are poorly understood. Here, we test whether ocean acidification, driven by elevated seawater pCO2, increases the susceptibility of native Olympia oysters to predation by invasive snails. Oysters raised under elevated pCO2 experienced a 20% increase in drilling predation. When presented alongside control oysters in a choice experiment, 48% more high-CO2 oysters were consumed. The invasive snails were tolerant of elevated CO2 with no change in feeding behaviour. Oysters raised under acidified conditions did not have thinner shells, but were 29–40% smaller than control oysters, and these smaller individuals were consumed at disproportionately greater rates. Reduction in prey size is a common response to environmental stress that may drive increasing per capita effects of stress-tolerant invasive predators.  相似文献   
496.
497.
The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium tuberculosis (M.tb) infection compared to individuals with more remote, established infection. We aimed to define blood-based biomarkers to distinguish between recent and remote infection, which would allow targeting of recently infected individuals for preventive TB treatment. We hypothesized that integration of multiple immune measurements would outperform the diagnostic performance of a single biomarker. Analysis was performed on different components of the immune system, including adaptive and innate responses to mycobacteria, measured on recently and remotely M.tb infected adolescents. The datasets were standardized using variance stabilizing scaling and missing values were imputed using a multiple factor analysis-based approach. For data integration, we compared the performance of a Multiple Tuning Parameter Elastic Net (MTP-EN) to a standard EN model, which was built to the individual adaptive and innate datasets. Biomarkers with non-zero coefficients from the optimal single data EN models were then isolated to build logistic regression models. A decision tree and random forest model were used for statistical confirmation. We found no difference in the predictive performances of the optimal MTP-EN model and the EN model [average area under the receiver operating curve (AUROC) = 0.93]. EN models built to the integrated dataset and the adaptive dataset yielded identically high AUROC values (average AUROC = 0.91), while the innate data EN model performed poorly (average AUROC = 0.62). Results also indicated that integration of adaptive and innate biomarkers did not outperform the adaptive biomarkers alone (Likelihood Ratio Test χ2 = 6.09, p = 0.808). From a total of 193 variables, the level of HLA-DR on ESAT6/CFP10-specific Th1 cytokine-expressing CD4 cells was the strongest biomarker for recent M.tb infection. The discriminatory ability of this variable was confirmed in both tree-based models.A single biomarker measuring M.tb-specific T cell activation yielded excellent diagnostic potential to distinguish between recent and remote M.tb infection.  相似文献   
498.
Persistently cold environments constitute one of our world's largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of light absorption and photochemistry with temperature-dependent processes of electron transport and utilization of energy sources through growth and metabolism. Despite this conundrum, phototrophic microorganisms thrive in all cold ecosystems described and (together with chemoautrophs) provide the base of autotrophic production in low-temperature food webs. Psychrophilic (organisms with a requirement for low growth temperatures) and psychrotolerant (organisms tolerant of low growth temperatures) photoautotrophs rely on low-temperature acclimative and adaptive strategies that have been described for other low-temperature-adapted heterotrophic organisms, such as cold-active proteins and maintenance of membrane fluidity. In addition, photoautrophic organisms possess other strategies to balance the absorption of light and the transduction of light energy to stored chemical energy products (NADPH and ATP) with downstream consumption of photosynthetically derived energy products at low temperatures. Lastly, differential adaptive and acclimative mechanisms exist in phototrophic microorganisms residing in low-temperature environments that are exposed to constant low-light environments versus high-light- and high-UV-exposed phototrophic assemblages.  相似文献   
499.
Variegated expression of genes contributes to phenotypic variation within populations of genetically identical cells. Such variation plays a role in development and host pathogen interaction and can be important in adaptation to harsh environments. The expression state of genes placed near telomeres shows a variegated pattern of inheritance due to heterochromatin formation, a phenomenon that is called telomere position effect (TPE). We show that in budding yeast, TPE is controlled by the a1/α2 developmental repressor, which dictates developmental decisions in response to environmental changes. Two a1/α2 repressed genes, STE5, a MAPK scaffold and HOG1, a stress-activated MAPK, are the targets of this heterochromatin regulation pathway. We provide new evidence that link MAPK signaling and heterochromatin formation in yeast. Our results show that the same components that regulate gene expression states in euchromatic regions regulate heterochromatic expression states and that stress can play a part in turning on or off genes placed in heterochromatic regions.  相似文献   
500.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号