首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2269篇
  免费   191篇
  国内免费   1篇
  2461篇
  2021年   10篇
  2020年   10篇
  2018年   16篇
  2017年   14篇
  2016年   36篇
  2015年   40篇
  2014年   54篇
  2013年   185篇
  2012年   102篇
  2011年   133篇
  2010年   62篇
  2009年   57篇
  2008年   120篇
  2007年   102篇
  2006年   102篇
  2005年   111篇
  2004年   125篇
  2003年   130篇
  2002年   134篇
  2001年   47篇
  2000年   53篇
  1999年   49篇
  1998年   38篇
  1997年   37篇
  1996年   29篇
  1995年   22篇
  1994年   32篇
  1993年   27篇
  1992年   48篇
  1991年   30篇
  1990年   42篇
  1989年   38篇
  1988年   45篇
  1987年   35篇
  1986年   28篇
  1985年   27篇
  1984年   19篇
  1983年   14篇
  1982年   22篇
  1981年   10篇
  1980年   17篇
  1979年   25篇
  1978年   26篇
  1977年   18篇
  1975年   16篇
  1974年   16篇
  1973年   15篇
  1971年   10篇
  1970年   15篇
  1968年   13篇
排序方式: 共有2461条查询结果,搜索用时 15 毫秒
141.
Peripheral blood mononuclear cells collected from 13 patients with chronic fatigue syndrome and 13 healthy controls were analyzed for the presence of human herpesvirus 6 (HHV-6) DNA by variant-specific polymerase chain reaction and dot blot hybridization. HHV-6 DNA was detected in 7 of 13 (53%) patients, and of those 7 patients, 4 were positive for HHV-6 variant A DNA and 3 were for variant B. No HHV-6 DNA was detected in the controls. Serum antibody titers to the late antigen and antibody prevalence to the early antigen of HHV-6 were significantly higher in the patient group. These results suggest active replication of HHV-6 in patients with chronic fatigue syndrome.  相似文献   
142.
143.
BACKGROUND: Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine involved in inflammation and immune responses as well as in cell growth. Although we previously demonstrated the presence of MIF in peripheral nerves, and MIF mRNA expression was up-regulated after axotomy, the role of MIF in nerve injury and regeneration has not been evaluated. MATERIALS AND METHODS: To examine the potential role of MIF in nerve regeneration, we locally administered an anti-MIF polyclonal antibody into regenerating rat sciatic nerves using the silicone chamber model. The effect of the anti-MIF antibody on nerve regeneration was evaluated using an axonal reflex test. In addition, we carried out a terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) assay and immunohistochemical analysis of the damaged nerve segments with regard to apoptosis-related proteins such as p53 to evaluate the effects of anti- MIF antibodies on apoptosis during the regeneration process. RESULTS: The regeneration length of the nerve in the anti-MIF antibody-treated group was significantly shorter than that in the non-immune rabbit IgG-treated group at weeks 2, 4 and 6 after surgery. TUNEL assay showed that a large number of apoptotic cells, mostly Schwann cells, were observed in the intratubal and distal nerve segments at weeks 4 and 6 after surgery by the anti-MIF antibody treatment. Consistent with these results, Ki-67-positive cells were significantly decreased by the anti-MIF antibody treatment. Immunohistochemical analyses revealed that p53 and, to a lesser extent, Fas were more up-regulated in the anti-MIF antibody-treated nerves than in the controls. CONCLUSION: Taken together, these results suggest that MIF plays an important role in acceleration of peripheral nerve regeneration and in prevention of Schwann cell apoptosis, mainly through overcoming the apoptotic effect of p53.  相似文献   
144.
The signaling pathway that transduces the stimulatory effect of low K+ on the biosynthesis of Na,K-ATPase remains largely unknown. The present study was undertaken to examine whether reactive oxygen species (ROS) mediated the effect of low K+ in Madin-Darby canine kidney (MDCK) cells. Low K+ increased ROS activity in a time- and dose-dependent manner, and this effect was abrogated by catalase and N-acetylcysteine (NAC). To determine the role of ROS in low-K+-induced gene expression, the cells were first stably transfected with expression constructs in which the reporter gene chloramphenicol acetyl transferase (CAT) was under the control of the avian Na,K-ATPase -subunit 1.9 kb and 900-bp 5'-flanking regions that have a negative regulatory element. Low K+ increased the CAT expression in both constructs. Catalase or NAC inhibited the effect of low K+. To determine whether the increased CAT activity was mediated through releasing the repressive effect or a direct stimulation of the promoter, the cells were transfected with a CAT expression construct directed by a 96-bp promoter fragment that has no negative regulatory element. Low K+ also augmented the CAT activity expressed by this construct. More importantly, both catalase and NAC abolished the effect of low K+. Moreover, catalase and NAC also inhibited low-K+-induced increases in the Na,K-ATPase 1- and 1-subunit protein abundance and ouabain binding sites. The antioxidants had no significant effect on the basal levels of CAT activity, protein abundance, or ouabain binding sites. In conclusion, low K+ enhances the Na,K-ATPase gene expression by a direct stimulation of the promoter activity, and ROS mediate this stimulation and also low-K+-induced increases in the Na,K-ATPase protein contents and cell surface molecules. Madin-Darby canine kidney cells; N-acetylcysteine; catalase  相似文献   
145.
The crystal structure of acidic phospholipase A2 from the venom of Agkistrodon halys blomhoffii has been determined by molecular replacement methods based on the known structure of Crotalus atrox PLA2, a same group II enzyme. The overall structures, except the calcium-binding regions, are very similar to each other. A calcium ion is pentagonally ligated to two carboxylate oxygen atoms of Asp-49 and each carbonyl oxygen atoms of Tyr-28, Gly-30 and Ala-31. A reason why the former enzyme functions as monomeric form, while the latter one does as dimer, could be presumed by the structural comparison of these calcium-binding regions. Although Gly-32 is usually participated as a ligand in the coordination with calcium ion in group I PLA2, it is characteristically replaced to Ala-31 in the present structure, and thus the coordination geometry of calcium ion is rather different from the usually observed one.  相似文献   
146.
Capsiate is a nonpungent capsaicin analog, a recently identified principle of the nonpungent red pepper cultivar CH-19 Sweet. In the present study, we report that 2-wk treatment of capsiate increased metabolic rate and promoted fat oxidation at rest, suggesting that capsiate may prevent obesity. To explain these effects, at least in part, we examined uncoupling proteins (UCPs) and thyroid hormones. UCPs and thyroid hormones play important roles in energy expenditure, the maintenance of body weight, and thermoregulation. Two-week treatment of capsiate increased the levels of UCP1 protein and mRNA in brown adipose tissue and UCP2 mRNA in white adipose tissue. This dose of capsiate did not change serum triiodothyronine or thyroxine levels. A single dose of capsiate temporarily raised both UCP1 mRNA in brown adipose tissue and UCP3 mRNA in skeletal muscle. These results suggest that UCP1 and UCP2 may contribute to the promotion of energy metabolism by capsiate, but that thyroid hormones do not.  相似文献   
147.
Pancreatic islets from DBA/2 mice infected with the D variant of encephalomyocarditis (EMC-D) virus revealed lymphocytic infiltration with moderate to severe destruction of pancreatic beta cells. Our previous studies showed that the major population of infiltrating cells at the early stages of infection is macrophages. The inactivation of macrophages prior to viral infection resulted in the prevention of diabetes, whereas activation of macrophages prior to viral infection resulted in the enhancement of beta-cell destruction. This investigation was initiated to determine whether macrophage-produced soluble mediators play a role in the destruction of pancreatic beta cells in mice infected with a low dose of EMC-D virus. When we examined the expression of the soluble mediators interleukin-1 beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) in the pancreatic islets, we found that these mediators were clearly expressed at an early stage of insulitis and that this expression was evident until the development of diabetes. We confirmed the expression of these mediators by in situ hybridization with digoxigenin-labelled RNA probes or immunohistochemistry in the pancreatic islets. Mice treated with antibody against IL-1beta or TNF-alpha or with the iNOS inhibitor aminoguanidine exhibited a significant decrease in the incidence of diabetes. Mice treated with a combination of anti-IL-1beta antibody, anti-TNF-alpha antibody, and aminoguanidine exhibited a greater decrease in the incidence of disease than did mice treated with one of the antibodies or aminoguanidine. On the basis of these observations, we conclude that macrophage-produced soluble mediators play an important role in the destruction of pancreatic beta cells, resulting in the development of diabetes in mice infected with a low dose of EMC-D virus.  相似文献   
148.
Temperature is one of the most important environmental factors that influence plant growth and development. Recent studies imply that plants show various responses to non-extreme ambient temperatures. Previously, we have found that a pepper cultivar cv. Sy-2 (Capsicum chinense) shows developmental defects at temperatures below 24°C. In this study, to gain new insights into the temperature sensitivity of cv. Sy-2, temperature-sensitive genes were screened using microarray techniques. At restrictive temperature of 20°C, almost one-fourth of the 411 up-regulated genes were defense related or predicted to be defense related. Further expression analyses of several defense-related genes showed that defense-related genes in cv. Sy-2 were constitutively expressed at temperatures below 24°C. Moreover, accumulation of high level of salicylic acid (SA) in cv. Sy-2 grown at 20°C suggests that the defense response is activated in the absence of pathogens. To confirm that the defense response is induced in cv. Sy-2 below 24°C, we evaluated the resistance to biotrophic bacterial pathogen Xanthomonas campestris pv. vesicatoria and necrotrophic fungal pathogen Cercospora capsici. Cv. Sy-2 showed enhanced resistance to X. campestris pv. vesicatoria, but not to C. capsici.  相似文献   
149.
Marine bacteria have recently attracted attention as potentially useful candidates for the production of practical materials from marine ecosystems, including the oceanic carbon dioxide cycle. The advantages of using marine bacteria for the biosynthesis of poly(hydroxyalkanoate) (PHA), one of the eco-friendly bioplastics, include avoiding contamination with bacteria that lack salt-water resistance, ability to use filtered seawater as a culture medium, and the potential for extracellular production of PHA, all of which would contribute to large-scale industrial production of PHA. A novel marine bacterium, Vibrio sp. strain KN01, was isolated and characterized in PHA productivity using various carbon sources under aerobic and aerobic–anaerobic marine conditions. The PHA contents of all the samples under the aerobic–anaerobic condition, especially when using soybean oil as the sole carbon source, were enhanced by limiting the amount of dissolved oxygen. The PHA accumulated using soybean oil as a sole carbon source under the aerobic–anaerobic condition contained 14% 3-hydroxypropionate (3HP) and 3% 5-hydroxyvalerate (5HV) units in addition to (R)-3-hydroxybutyrate (3HB) units and had a molecular weight of 42 × 103 g/mol. The present result indicates that the activity of the beta-oxidation pathway under the aerobic–anaerobic condition is reduced due to a reduction in the amount of dissolved oxygen. These findings have potential for use in controlling the biosynthesis of long main-chain PHA by regulating the activity of the beta-oxidation pathway, which also could be regulated by varying the dissolved oxygen concentration.  相似文献   
150.
Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号