首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2719篇
  免费   165篇
  2884篇
  2022年   18篇
  2021年   28篇
  2020年   18篇
  2019年   27篇
  2018年   35篇
  2017年   32篇
  2016年   56篇
  2015年   74篇
  2014年   104篇
  2013年   181篇
  2012年   169篇
  2011年   151篇
  2010年   87篇
  2009年   71篇
  2008年   152篇
  2007年   113篇
  2006年   135篇
  2005年   126篇
  2004年   135篇
  2003年   109篇
  2002年   91篇
  2001年   93篇
  2000年   95篇
  1999年   84篇
  1998年   29篇
  1997年   18篇
  1996年   12篇
  1995年   20篇
  1994年   16篇
  1993年   16篇
  1992年   47篇
  1991年   45篇
  1990年   42篇
  1989年   53篇
  1988年   48篇
  1987年   42篇
  1986年   43篇
  1985年   38篇
  1984年   28篇
  1983年   10篇
  1982年   28篇
  1981年   13篇
  1979年   17篇
  1978年   18篇
  1977年   12篇
  1974年   13篇
  1973年   12篇
  1972年   8篇
  1969年   16篇
  1967年   7篇
排序方式: 共有2884条查询结果,搜索用时 15 毫秒
991.
The supply and consumption of alkalinity in Sawano-ike Pond was investigated to reveal the mechanisms of pH fluctuation in the pond. Alkalinity in the bottom layer at the deepest point of the pond increased in summer, but in-pond generation of alkalinity was estimated to be very small because of the low depth of water in the pond. According to the calculations of water budget and solute balance, subsurface water, the alkalinity of which is moderately high, accounted for 45% of the total influx during a period of relatively high water level. The predicted concentrations of major ions and alkalinity in the pond calculated from the mass balance coincided well with measured concentrations. The relatively high pH values of the pond water during a period of high water level are considered to be mainly caused by alkalinity supplied by influxes, especially subsurface water. During a period of relatively low water level, predicted alkalinity exceeded measured alkalinity by 29%, indicating the occurrence of in-pond consumption of alkalinity with a resultant decrease in pH.  相似文献   
992.
In the Krebs cycle of Helicobacter pylori, the absence of alpha-ketoglutarate dehydrogenase and succinyl CoA synthetase are shown. Instead, alpha-ketoglutarate is converted to succinyl CoA and succinate by alpha-ketoglutarate oxidoreductase (KOR) and CoA transferase (CoAT). In the present study, when H. pylori transformed to the coccoid form, a viable but non-culturable form of H. pylori with reduced metabolic activity, the KOR activity was enhanced while the CoAT activity was reduced. Direct inactivation of KOR could potently kill the bacteria without allowing conversion to the coccoid form, suggesting a novel treatment strategy for the eradication of H. pylori, especially in cases infected with multiple antibiotic-resistant strains.  相似文献   
993.
Several lines of evidence suggest the involvement of the raphe-serotonergic neurons in addiction to psychostimulants and some recreational drugs. In this study, we established rat organotypic mesencephalic slice cultures containing the raphe nuclei and examined the effects of sustained exposure to 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH). Immunostaining for tryptophan hydroxylase (TPH) studies revealed that serotonergic neurons were abundant in the slice cultures. Sustained exposure to MDMA and METH (1-1000 microM) for 4 days had little effect on the serotonin tissue content, [(3)H]citalopram binding, or expression/phosphorylation of TPH. Treatment with MDMA or METH for 30 min increased serotonin release in a concentration-dependent manner. Slice cultures were exposed to MDMA for 4 days following a 1-day withdrawal period and then challenged with MDMA (10 microM). Sustained MDMA exposure augmented MDMA-induced serotonin release in a concentration-dependent manner, indicating serotonergic sensitization. Similar serotonergic sensitization was observed for METH. The development of MDMA-induced serotonergic sensitization was attenuated by the NMDA receptor antagonist, MK-801 (10 microM). These results suggest that in mesencephalic slice cultures sustained MDMA or METH exposure induces serotonergic sensitization through activation of NMDA receptors without serotonergic neurotoxicity. The in vitro model system could help to elucidate the mechanisms underlying drug addiction.  相似文献   
994.
Hydration effects on protein dynamics were investigated by comparing the frequency dependence of the calculated neutron scattering spectra between full and minimal hydration states at temperatures between 100 and 300 K. The protein boson peak is observed in the frequency range 1-4 meV at 100 K in both states. The peak frequency in the minimal hydration state shifts to lower than that in the full hydration state. Protein motions with a frequency higher than 4 meV were shown to undergo almost harmonic motion in both states at all temperatures simulated, whereas those with a frequency lower than 1 meV dominate the total fluctuations above 220 K and contribute to the origin of the glass-like transition. At 300 K, the boson peak becomes buried in the quasielastic contributions in the full hydration state but is still observed in the minimal hydration state. The boson peak is observed when protein dynamics are trapped within a local minimum of its energy surface. Protein motions, which contribute to the boson peak, are distributed throughout the whole protein. The fine structure of the dynamics structure factor is expected to be detected by the experiment if a high resolution instrument (<∼20 μeV) is developed in the near future.  相似文献   
995.
Adenovirus (Ad) vectors are among the most commonly used viral vectors in gene therapy clinical trials. However, the application of Ad vectors has been limited to local injection in many cases, because the systemic administration of Ad vectors triggers innate immune responses such as inflammatory cytokine production and tissue damage. To overcome this limitation, it will be necessary to develop safer Ad vectors less likely to induce the innate immune response. In the present study, we demonstrated that a suppressor of cytokine signaling-1 (SOCS1)-expressing Ad vector, Ad-SOCS1, reduces the innate immune response induced by Ad vectors. RAW264.7-SOCS1, a macrophage-like cell line that stably expresses SOCS1, was shown to produce lower levels of inflammatory cytokines after the transduction of Ad vectors. The systemic administration of Ad-SOCS1 into mice elicited the reduced production of inflammatory cytokines, as compared with that elicited by control Ad vectors, i.e., luciferase-expressing Ad vector, Ad-L2. Furthermore, the coadministration of Ad-L2 with Ad-SOCS1 attenuated inflammatory cytokine production and liver toxicity as compared with injection with Ad-L2 alone, and this was achieved without the suppression of luciferase production in various organs. The JAK/STAT pathway was involved in Ad vector-mediated cytokine production, which was impaired by the overexpression of SOCS1. These findings indicate that Ad-SOCS1 could be useful for reducing Ad vector-mediated innate immunity.  相似文献   
996.
997.
Increasing evidence of lipid peroxidation in food deterioration and pathophysiology of diseases have revealed the need for a pure lipid hydroperoxide (LOOH) reference as an authentic standard for quantification and as a compound for biological studies in this field. Generally, LOOH is prepared from photo- or enzymatically oxidized lipids; however, separating LOOH from other oxidation products and preparing pure LOOH is difficult. Early studies showed the usability of reaction between hydroperoxide and vinyl ether for preparation of pure LOOH. Because the reactivity of vinyl ether with LOOHs other than fatty acid hydroperoxides has never been reported, here, we employed the reaction for preparation of a wide variety of pure LOOHs. Phospholipid, cholesteryl ester, triacylglycerol, or fatty acid was photo- or enzymatically oxidized; the resultant crude sample containing hydroperoxide was allowed to react with a vinyl ether [2-methoxypropene (MxP)]. Liquid chromatography (LC) and mass spectrometry confirmed that MxP selectively reacts with LOOH, yielding a stable MxP adduct (perketal). The lipophilic perketal was eluted at a position away from that of intact LOOH and identified and isolated by LC. Upon treatment with acid, perketal released the original LOOH, which was finally purified by LC. Using our optimized purification procedures, for instance, we produced 75 mg of pure phosphatidylcholine hydroperoxide (>99%) from 100 mg of phosphatidylcholine. Our developed method expands the concept of the perketal method, which provides pure LOOH references. The LOOHs prepared by the perketal method would be used as "gold standards" in LOOH methodology.  相似文献   
998.
SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1 (SHPS-1 or SIRPα/BIT) is an immunoglobulin (Ig) superfamily transmembrane receptor and a member of the signal regulatory protein (SIRP) family involved in cell-cell interaction. SHPS-1 binds to its ligand CD47 to relay an inhibitory signal for cellular responses, whereas SIRPβ, an activating member of the same family, does not bind to CD47 despite sharing a highly homologous ligand-binding domain with SHPS-1. To address the molecular basis for specific CD47 recognition by SHPS-1, we present the crystal structure of the ligand-binding domain of murine SHPS-1 (mSHPS-1). Folding topology revealed that mSHPS-1 adopts an I2-set Ig fold, but its overall structure resembles IgV domains of antigen receptors, although it has an extended loop structure (C′E loop), which forms a dimer interface in the crystal. Site-directed mutagenesis studies of mSHPS-1 identified critical residues for CD47 binding including sites in the C′E loop and regions corresponding to complementarity-determining regions of antigen receptors. The structural and functional features of mSHPS-1 are consistent with the human SHPS-1 structure except that human SHPS-1 has an additional β-strand D. These results suggest that the variable complementarity-determining region-like loop structures in the binding surface of SHPS-1 are generally required for ligand recognition in a manner similar to that of antigen receptors, which may explain the diverse ligand-binding specificities of SIRP family receptors.  相似文献   
999.
The tonoplast K(+) membrane transport system plays a crucial role in maintaining K(+) homeostasis in plant cells. Here, we isolated cDNAs encoding a two-pore K(+) channel (NtTPK1) from Nicotiana tabacum cv. SR1 and cultured BY-2 tobacco cells. Two of the four variants of NtTPK1 contained VHG and GHG instead of the GYG signature sequence in the second pore region. All four products were functional when expressed in the Escherichia coli cell membrane, and NtTPK1 was targeted to the tonoplast in tobacco cells. Two of the three promoter sequences isolated from N. tabacum cv. SR1 were active, and expression from these was increased approximately 2-fold by salt stress or high osmotic shock. To determine the properties of NtTPK1, we enlarged mutant yeast cells with inactivated endogenous tonoplast channels and prepared tonoplasts suitable for patch clamp recording allowing the NtTPK1-related channel conductance to be distinguished from the small endogenous currents. NtTPK1 exhibited strong selectivity for K(+) over Na(+). NtTPK1 activity was sensitive to spermidine and spermine, which were shown to be present in tobacco cells. NtTPK1 was active in the absence of Ca(2+), but a cytosolic concentration of 45 microM Ca(2+) resulted in a 2-fold increase in the amplitude of the K(+) current. Acidification of the cytosol to pH 5.5 also markedly increased NtTPK1-mediated K(+) currents. These results show that NtTPK1 is a novel tonoplast K(+) channel belonging to a different group from the previously characterized vacuolar channels SV, FV, and VK.  相似文献   
1000.
The major damage to DNA caused by alkylating agents involves the formation of O(6)-methylguanine (O(6)-meG). Almost all species possess O(6)-methylguanine-DNA-methyltransferase (Ogt) to repair such damage. Ogt repairs O(6)-meG lesions in DNA by stoichiometric transfer of the methyl group to a cysteine residue in its active site (PCHR). Thermus thermophilus HB8 has an Ogt homologue, TTHA1564, but in this case an alanine residue replaces cysteine in the putative active site. To reveal the possible function of TTHA1564 in processing O(6)-meG-containing DNA, we characterized the biochemical properties of TTHA1564. No methyltransferase activity for synthetic O(6)-meG-containing DNA could be detected, indicating TTHA1564 is an alkyltransferase-like protein. Nevertheless, gel shift assays showed that TTHA1564 can bind to DNA containing O(6)-meG with higher affinity (9-fold) than normal (unmethylated) DNA. Experiments using a fluorescent oligonucleotide suggested that TTHA1564 recognizes O(6)-meG in DNA using the same mechanism as other Ogts. We then investigated whether TTHA1564 functions as a damage sensor. Pull-down assays identified 20 proteins, including a nucleotide excision repair protein UvrA, which interacts with TTHA1564. Interaction of TTHA1564 with UvrA was confirmed using a surface plasmon resonance assay. These results suggest the possible involvement of TTHA1564 in DNA repair pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号