首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   930篇
  免费   53篇
  983篇
  2021年   7篇
  2020年   3篇
  2019年   6篇
  2018年   13篇
  2017年   7篇
  2016年   15篇
  2015年   24篇
  2014年   24篇
  2013年   102篇
  2012年   46篇
  2011年   49篇
  2010年   24篇
  2009年   19篇
  2008年   41篇
  2007年   58篇
  2006年   59篇
  2005年   54篇
  2004年   42篇
  2003年   68篇
  2002年   42篇
  2001年   24篇
  2000年   26篇
  1999年   17篇
  1998年   7篇
  1997年   8篇
  1996年   8篇
  1995年   5篇
  1994年   11篇
  1993年   12篇
  1992年   14篇
  1991年   15篇
  1990年   17篇
  1989年   18篇
  1988年   11篇
  1987年   12篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1981年   8篇
  1980年   6篇
  1979年   4篇
  1977年   3篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1969年   3篇
  1968年   2篇
排序方式: 共有983条查询结果,搜索用时 15 毫秒
41.
42.
A genomic clone bank of Acetobacter polyoxogenes NBI1028 constructed in Escherichia coli by use of the expression vector pUC18 was screened with antibody raised against membrane-bound aldehyde dehydrogenase (ALDH; 75 kilodaltons [kDa]) from A. polyoxogenes NBI1028. A clone that synthesized a 41-kDa protein cross-reactive with anti-ALDH antibody was isolated. For cloning of the full-length ALDH structural gene, a cosmid gene bank was screened by Southern blot hybridization with the cloned DNA as a probe, and subcloning from the positive cosmid clone was performed with shuttle vector pMV24. Plasmid pAL25, containing the full-length ALDH structural gene, was isolated and expressed in both E. coli and Acetobacter aceti to produce a fused protein (78 kDa) with a short NH2-terminal β-galactosidase peptide. pAL25 conferred ALDH production on a mutant of A. aceti lacking the enzyme activity. Transformation of A. aceti subsp. xylinum NBI2099 with pAL25 caused 2- and 1.4-fold increases in the production rate and in the maximum concentration of acetic acid in submerged fermentation, respectively.  相似文献   
43.
Environmental DNA (eDNA) analysis of water samples is on the brink of becoming a standard monitoring method for aquatic species. This method has improved detection rates over conventional survey methods and thus has demonstrated effectiveness for estimation of site occupancy and species distribution. The frontier of eDNA applications, however, is to infer species density. Building upon previous studies, we present and assess a modeling approach that aims at inferring animal density from eDNA. The modeling combines eDNA and animal count data from a subset of sites to estimate species density (and associated uncertainties) at other sites where only eDNA data are available. As a proof of concept, we first perform a cross‐validation study using experimental data on carp in mesocosms. In these data, fish densities are known without error, which allows us to test the performance of the method with known data. We then evaluate the model using field data from a study on a stream salamander species to assess the potential of this method to work in natural settings, where density can never be known with absolute certainty. Two alternative distributions (Normal and Negative Binomial) to model variability in eDNA concentration data are assessed. Assessment based on the proof of concept data (carp) revealed that the Negative Binomial model provided much more accurate estimates than the model based on a Normal distribution, likely because eDNA data tend to be overdispersed. Greater imprecision was found when we applied the method to the field data, but the Negative Binomial model still provided useful density estimates. We call for further model development in this direction, as well as further research targeted at sampling design optimization. It will be important to assess these approaches on a broad range of study systems.  相似文献   
44.
The recruitment of tissue‐resident stem cells is important for wound regeneration. Periodontal ligament cells (PDL cells) are heterogeneous cell populations with stemness features that migrate into wound sites to regenerate periodontal fibres and neighbouring hard tissues. Cell migration is regulated by the local microenvironment, coordinated by growth factors and the extracellular matrix (ECM). Integrin‐mediated cell adhesion to the ECM provides essential signals for migration. We hypothesized that PDL cell migration could be enhanced by selective expression of integrins. The migration of primary cultured PDL cells was induced by platelet‐derived growth factor‐BB (PDGF‐BB). The effects of blocking specific integrins on migration and ECM adhesion were investigated based on the integrin expression profiles observed during migration. Up‐regulation of integrins α3, α5, and fibronectin was identified at distinct localizations in migrating PDL cells. Treatment with anti‐integrin α5 antibodies inhibited PDL cell migration. Treatment with anti‐integrin α3, α3‐blocking peptide, and α3 siRNA significantly enhanced cell migration, comparable to treatment with PDGF‐BB. Furthermore, integrin α3 inhibition preferentially enhanced adhesion to fibronectin via integrin α5. These findings indicate that PDL cell migration is reciprocally regulated by integrin α3‐mediated inhibition and α5‐mediated promotion. Thus, targeting integrin expression is a possible therapeutic strategy for periodontal regeneration.  相似文献   
45.
Summary Using an ethanol solution of nile blue, we have developed an efficient method to detect the colonies of poly(3-hydroxyalkanoic acids) (PHA) producing bacteria on the agar plate. When the bacterial colonies with PHA granules were stained with nile blue, the stained colonies fluoresced bright orange on the irradiation of UV light. In the fluoresce emission spectra, fluorescence intensity increased with an increase in the PHA content of bacterial cells.Alcaligenes eutrophus andA.latus colonies with poly(3-hydroxybutyric acid) (PHB) homopolymer exhibited an emission maximum at 580nm on the excitation at 490nm. On the other hand,Pseudomonas oleovorans andP.putida with medium-chain-length (mcl-) PHA copolymers of C6, C8 and C10 units exhibited an emission maximum at 570nm.  相似文献   
46.
A 29 kb shuttle cosmid vector, pTYS507, was constructed from a cryptic Micromonospora griseorubida plasmid and the Escherichia coli cosmid pJB8. Subcloning of mycinamicin II biosysnthesis genes in pTYS507 led to the identification of a DNA region that could complement a mutant of M. griseorubida that lacked both hydroxylase and epoxidase activities. Nucleotide sequence and mutational analysis suggested that a single P-450-like protein catalyzes both reactions.  相似文献   
47.
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic diseases, and results in the development of fibrosis. Oxidative stress is thought to be one of the underlying causes of NAFLD. Copper/zinc superoxide dismutase (SOD1) is a primary antioxidative enzyme that scavenges superoxide anion radicals. Although SOD1 knockout (KO) mice have been reported to develop fatty livers, it is not known whether this lack of SOD1 leads to the development of fibrosis. Since the accumulation of collagen typically precedes liver fibrosis, we assessed the balance between the synthesis and degradation of collagen in liver tissue from SOD1 KO mice. We found a higher accumulation of collagen in the livers of SOD1 KO mice compared to wild type mice. The level of expression of HSP47, a chaperone of collagen, and a tissue inhibitor (TIMP1) of matrix metalloproteinases (a collagen degradating enzyme) was also increased in SOD1 KO mice livers. These results indicate that collagen synthesis is increased but that its degradation is inhibited in SOD1 KO mice livers. Moreover, SOD1 KO mice liver sections were extensively modified by advanced glycation end products (AGEs), which suggest that collagen in SOD1 KO mice liver might be also modified with AGEs and then would be more resistant to the action of collagen degrading enzymes. These findings clearly show that oxidative stress plays an important role in the progression of liver fibrosis.  相似文献   
48.

Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.

  相似文献   
49.
50.
The olfactory system provides an excellent model in which to study cell proliferation, migration, differentiation, axon guidance, dendritic morphogenesis, and synapse formation. We report here crucial roles of the Arx homeobox gene in the developing olfactory system by analyzing its mutant phenotypes. Arx protein was expressed strongly in the interneurons and weakly in the radial glia of the olfactory bulb, but in neither the olfactory sensory neurons nor bulbar projection neurons. Arx-deficient mice showed severe anatomical abnormalities in the developing olfactory system: (1) size reduction of the olfactory bulb, (2) reduced proliferation and impaired entry into the olfactory bulb of interneuron progenitors, (3) loss of tyrosine hydroxylase-positive periglomerular cells, (4) disorganization of the layer structure of the olfactory bulb, and (5) abnormal axonal termination of olfactory sensory neurons in an unusual axon-tangled structure, the fibrocellular mass. Thus, Arx is required for not only the proper developmental processes of Arx-expressing interneurons, but also the establishment of functional olfactory neural circuitry by affecting Arx-non-expressing sensory neurons and projection neurons. These findings suggest a likely role of Arx in regulating the expression of putative instructive signals produced in the olfactory bulb for the proper innervation of olfactory sensory axons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号