首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   675篇
  免费   39篇
  国内免费   1篇
  2023年   8篇
  2022年   10篇
  2021年   34篇
  2020年   21篇
  2019年   22篇
  2018年   29篇
  2017年   25篇
  2016年   31篇
  2015年   39篇
  2014年   35篇
  2013年   66篇
  2012年   60篇
  2011年   52篇
  2010年   30篇
  2009年   31篇
  2008年   44篇
  2007年   32篇
  2006年   24篇
  2005年   24篇
  2004年   21篇
  2003年   23篇
  2002年   12篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有715条查询结果,搜索用时 31 毫秒
81.
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes.  相似文献   
82.
Here, we examined whether amyloid-beta (Abeta) protein participates in cell death and retinal function using three types of transgenic (Tg) mice in vivo [human mutant amyloid precursor protein (APP) Tg (Tg 2576) mice, mutant presenilin-1 (PS-1) knock-in mice, and APP/PS-1 double Tg mice]. ELISA revealed that the insoluble form of Abeta(1-40) was markedly accumulated in the retinas of APP and APP/PS-1, but not PS-1 Tg, mice (vs. wild-type mice). In APP Tg and APP/PS-1 Tg mice, immunostaining revealed accumulations of intracellular Abeta(1-42) in retinal ganglion cells and in the inner and outer nuclear layers. APP Tg and APP/PS-1 Tg, but not PS-1 Tg, mice had less NMDA-induced retinal damage than wild-type mice, and the reduced damage in APP/PS-1 Tg mice was diminished by the pre-treatment of N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, a gamma-secretase inhibitor. Furthermore, the number of TUNEL-positive cells was significantly less in ganglion cell layer of APP/PS-1 Tg mice than PS-1 Tg mice 24 h after NMDA injection. The phosphorylated form of calcium/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha), but not total CaMKIIalpha or total NMDA receptor 1 (NR1) subunit, in total retinal extracts was decreased in non-treated retinas of APP/PS-1 Tg mice (vs. wild-type mice). CaMKIIalpha and NR2B proteins, but not NR1, in retinal membrane fraction were significantly decreased in APP/PS-1 Tg mice as compared with wild-type mice. The NMDA-induced increase in p-CaMKIIalpha in the retina was also lower in APP/PS-1 Tg mice than in wild-type mice. In electroretinogram and visual-evoked potential recordings, the implicit time to each peak from a light stimulus was prolonged in APP/PS-1 mice versus wild-type mice. Hence, Abeta may impair retinal function by reducing activation of NMDA-receptor signaling pathways.  相似文献   
83.
Measles is one of the most contagious human infectious diseases and remains a major cause of childhood morbidity and mortality worldwide. The signaling lymphocyte activation molecule (SLAM), also called CD150, is a cellular receptor for measles virus (MV), presumably accounting for its tropism for immune cells and its immunosuppressive properties. On the other hand, pathological studies have shown that MV also infects epithelial cells at a later stage of infection, although its mechanism has so far been unknown. In this study, we show that wild-type MV can infect and produce syncytia in human polarized epithelial cell lines independently of SLAM and CD46 (a receptor for the vaccine strains of MV). Progeny viral particles are released exclusively from the apical surface of these polarized epithelial cell lines. We have also identified amino acid residues on the MV attachment protein that are likely to interact with a putative receptor on epithelial cells. All of these residues have aromatic side chains and may form a receptor-binding pocket located in a different position from the putative SLAM- and CD46-binding sites on the MV attachment protein. Thus, our results indicate that MV has an intrinsic ability to infect both polarized epithelial and immune cells by using distinctive receptor-binding sites on the attachment protein corresponding to each of their respective receptors. The ability of MV to infect polarized epithelial cells and its exclusive release from the apical surface may facilitate its efficient transmission via aerosol droplets, resulting in its highly contagious nature.  相似文献   
84.
85.
Sphingosine 1-phosphate (S1P) produced by sphingosine kinase (SPHK) is implicated in acute immunoresponses, however, mechanisms of SPHK/S1P signaling in the pathogenesis of bronchial asthma are poorly understood. In this study, we hypothesized that SPHK inhibition could ameliorate lung inflammation in ovalbumin (OVA)-challenged mouse lungs. Six- to eight-week-old C57BL/6J mice were sensitized and exposed to OVA for 3 consecutive days. Twenty-four hours later, mice lungs and bronchoalveolar lavage (BAL) fluid were analyzed. For an inhibitory effect, either of the two different SPHK inhibitors, N,N-dimethylsphingosine (DMS) or SPHK inhibitor [SK-I; 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole], was nebulized for 30 min before OVA inhalation. OVA inhalation caused S1P release into BAL fluid and high expression of SPHK1 around bronchial epithelial walls and inflammatory areas. DMS or SK-I inhalation resulted in a decrease in S1P amounts in BAL fluid to basal levels, accompanied by decreased eosinophil infiltration and peroxidase activity. The extent of inhibition caused by DMS inhalation was higher than that caused by SK-I. Like T helper 2 (Th2) cytokine release, OVA inhalation-induced increase in eotaxin expression was significantly suppressed by DMS pretreatment both at protein level in BAL fluid and at mRNA level in lung homogenates. Moreover, bronchial hyperresponsiveness to inhaled methacholine and goblet cell hyperplasia were improved by SPHK inhibitors. These data suggest that the inhibition of SPHK affected acute eosinophilic inflammation induced in antigen-challenged mouse model and that targeting SPHK may provide a novel therapeutic tool to treat bronchial asthma.  相似文献   
86.
Acne is a human disease of the sebaceous hair follicle. Unlike humans, most animals produce little or no triglycerides in hair follicles to harbor Propionibacterium acnes a fact that has encumbered the development of novel treatments for acne lesions. Although genetic mutant mice with acne-like skins have been used for screening anti-acne drugs, the mice generally have deficits in immune system that turns out to be inappropriate to generate antibodies for developing acne vaccines. Here, we employed a bioengineering approach using a tissue chamber integrated with a dermis-based cell-trapped system (DBCTS) to mimic the in vivo microenvironment of acne lesions. Human sebocyte cell lines were grown in DBCTS as a scaffold and inserted into a perforated tissue chamber. After implantation of a tissue chamber bearing human sebocytes into ICR mice, P. acnes or PBS was injected into a tissue chamber to induce host immune response. Infiltrated cells such as neutrophils and macrophages were detectable in tissue chamber fluids. In addition, a proinflammatory cytokine macrophage-inflammatory protein-2 (MIP-2) was elevated after P. acnes injection. In tissue chamber fluids, 13 proteins including secreted proteins and cell matrix derived from mouse, human cells or P. acnes were identified by proteomics using isotope-coded protein label (ICPL) coupled to nano-LC-MS analysis. After P. acnes infection, four proteins including fibrinogen, alpha polypeptide, fibrinogen beta chain, S100A9, and serine protease inhibitor A3K showed altered concentrations in the mimicked acne microenvironment. The bioengineered acne model thus provides an in vivo microenvironment to study the interaction of host with P. acnes and offers a unique set-up for screening novel anti-acne drugs and vaccines.  相似文献   
87.
The p57/coronin-1 protein is a member of the coronin family of actin-binding proteins, which are characterized by the presence of WD (tryptophan/aspartic acid) repeats and a coiled-coil motif in the molecule. It is selectively expressed in immune cells and has been suggested to play crucial roles in leukocyte functions, including cell migration and phagocytosis. In this study we examined the effects of p57/coronin-1 phosphorylation on the association of the protein with actin. Treatment of HL60 human leukemic cells or p57/coronin-1-transfected HEK293 cells with phorbol 12-myristate 13-acetate (PMA) reduced the association of p57/coronin-1 with the actin cytoskeleton, as indicated by cell fractionation experiments and by fluorescence microscopic observation. Two-dimensional gel electrophoresis of HL60 cell lysate revealed that p57/coronin-1 was phosphorylated upon PMA stimulation of the cells, giving two major and two minor spots of phosphorylated forms, each with distinct isoelectric points. The p57/coronin-1 molecules associated with the cytoskeleton in PMA-treated HL60 cells were phosphorylated at lower levels than those recovered in the cytosolic fraction. In addition, p57/coronin-1 co-sedimented with F-actin polymerized in vitro had lower phosphorylation levels than the molecules remaining in the supernatant. By affinity chromatographic analysis using anti-p57/coronin-1 antibody-conjugated Sepharose, p57/coronin-1 derived from PMA-treated HL60 cells showed lower affinity for actin than that from untreated cells. Finally, recovery of p57/coronin-1 in the actin cytoskeleton-rich fraction from neutrophil-like differentiated HL60 cells decreased during phagocytosis, concomitant with enhanced phosphorylation of p57/coronin-1. These results strongly suggest that the phosphorylation of p57/coronin-1 down-regulates its association with actin and modulates the reorganization of actin-containing cytoskeleton.  相似文献   
88.
The c-myb proto-oncogene product (c-Myb) is degraded in response to Wnt-1 signaling via a pathway involving TAK1 (transforming growth factor-beta-activated kinase 1), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). NLK directly binds to c-Myb, which results in the phosphorylation of c-Myb at multiple sites, and induces its ubiquitination and proteasome-dependent degradation. Here, we report that Fbxw7, the F-box protein of an SCF complex, targets c-Myb for degradation in a Wnt-1- and NLK-dependent manner. Fbxw7alpha directly binds to c-Myb via its C-terminal WD40 domain and induces the ubiquitination of c-Myb in the presence of NLK in vivo and in vitro. The c-Myb phosphorylation site mutant failed to interact with Fbxw7alpha, suggesting that the c-Myb/Fbxw7alpha interaction is enhanced by NLK phosphorylation of c-Myb. Treatment of M1 cells with Fbxw7 small interfering RNA (siRNA) rescued the Wnt-induced c-Myb degradation and also the Wnt-induced inhibition of cell proliferation. NLK bound to Cul1, a component of the SCF complex, while HIPK2 interacted with both Fbxw7alpha and Cul1, suggesting that both kinases enhance the c-Myb/SCF interaction. In contrast to c-Myb, the v-myb gene product (v-Myb) encoded by the avian myeloblastosis virus was resistant to NLK/Fbxw7alpha-induced degradation. Thus, Fbxw7 is an E3 ubiquitin ligase of c-Myb, and the increased c-Myb levels may contribute, at least partly, to transformation induced by mutation of Fbxw7.  相似文献   
89.
Active bovine selenophosphate synthetase 2, not having selenocysteine   总被引:1,自引:0,他引:1  
During the course of studying selenocysteine (Sec) synthesis mechanisms in mammals, we prepared selenophosphate synthetase (SPS) from bovine liver by 4-step chromatography. In the last step of chromatography of hydroxyapatite, we found a protein band of molecular mass 33 kDa on SDS-PAGE, consistent with the pattern of SPS activity that was indirectly manifested by [75Se]Sec production activity; however, we could not detect significant Se content in this active fraction. We also found a clear band of 33 kDa by Western blotting with antibody against a common peptide (387-401) in SPS2. We detected selenophosphate as the product of this active enzyme in the reaction mixture, composed of ATP, [75Se]H2Se and SPS. Chemically synthesized selenophosphate plays a role in Sec synthesis, not the addition of this enzyme. These results support that the product of SPS2 is selenophosphate itself. During this investigation, the probable sequence of bovine SPS2 not having Sec was reported in the blast information and the molecular mass was near with the protein in this report. Thus, bovine active SPS2 of molecular mass 33 kDa does not contain Sec. K. Furumiya and K. Kanaya contributed equally to this work.  相似文献   
90.
Although touch responses of plant roots are an important adaptive behavior, the molecular mechanism remains unclear. We have developed a bioassay for measuring root-bending responses to physical hardness in Arabidopsis thaliana seedlings. Our test requires a two-layer solid medium. Primary roots growing downward through an upper layer of 0.3% phytagel either penetrate the lower layer or bend along an interface between the upper and lower layers with different concentrations (0.2–0.5%, corresponding to 1.57–6.79 gw mm−2 in hardness). In proportion to increasing hardness of the lower layer, we found that the percentage of bending roots increased and ethylene production decreased, suggesting an inverse relationship between the root-bending response and ethylene production. Studies with ethylene biosynthesis modulators and mutants also suggested that bending and non-bending responses of roots to medium hardness depend, respectively, on decreased and increased ethylene biosynthesis. In addition, the degrees of root-tip softening and differential root-cell growth, both possible factors determining root-bending response, were enhanced and attenuated by decreased and increased amounts of ethylene, respectively—also in bending roots and non-bending roots. Our findings indicate that ethylene regulates root touch responses, probably through a combination of root-tip softening (or hardening) and differential root-cell growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号