首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1182篇
  免费   91篇
  国内免费   2篇
  2023年   3篇
  2022年   6篇
  2021年   9篇
  2020年   7篇
  2019年   12篇
  2018年   15篇
  2017年   4篇
  2016年   16篇
  2015年   31篇
  2014年   33篇
  2013年   56篇
  2012年   51篇
  2011年   58篇
  2010年   36篇
  2009年   45篇
  2008年   70篇
  2007年   60篇
  2006年   64篇
  2005年   69篇
  2004年   60篇
  2003年   53篇
  2002年   62篇
  2001年   59篇
  2000年   48篇
  1999年   43篇
  1998年   12篇
  1997年   20篇
  1996年   6篇
  1995年   14篇
  1994年   5篇
  1993年   11篇
  1992年   23篇
  1991年   27篇
  1990年   19篇
  1989年   19篇
  1988年   23篇
  1987年   16篇
  1986年   12篇
  1985年   13篇
  1984年   12篇
  1983年   10篇
  1982年   9篇
  1981年   8篇
  1975年   9篇
  1974年   6篇
  1973年   3篇
  1972年   3篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
排序方式: 共有1275条查询结果,搜索用时 15 毫秒
961.
Amaranthus tricolor L. tricolor cv. Earlysplendor, an ornamental amaranth, generates red leaves instead of green leaves in late summer to early autumn. Red leaf formation was promoted under short-day conditions and delayed by night-break treatments. Red leaves were characterized by lower levels of chlorophyll accumulation rather than higher levels of red pigment (betacyanin) accumulation. However, the metabolic activity toward the production of Mg-protoporphyrin, an intermediate in the biosynthesis pathway for chlorophyll, was detected in red leaves as well as in green leaves. RNA gel blot analysis was performed to assess the expression of nine genes encoding eight enzymes involved in chlorophyll biosynthesis. Among these enzymes, red-leaf-specific reduction of gene expression was observed only for NADPH-protochlorophyllide oxidoreductase (POR), a key enzyme catalyzing a later step of chlorophyll biosynthesis. In addition, immunoblot analysis showed no accumulation of POR protein(s) in red leaves. These data indicate that the repression of POR gene expression and resultant loss of chlorophyll synthesis activity plays a role in red leaf formation of A. tricolor.  相似文献   
962.
High permissivity of the fish cell line SSN-1 for piscine nodaviruses.   总被引:6,自引:0,他引:6  
Seventeen isolates of piscine nodavirus from larvae or juveniles of 13 marine fish species affected with viral nervous necrosis (VNN) were examined for their infectivity to a fish cell line SSN-1. Based on cytopathic effects (CPE) and virus antigen detection by fluorescent antibody technique (FAT) after incubation at 25 degrees C, the infectivity of these virus isolates was divided into 4 groups. Group 1, including 9 virus isolates from 4 species of grouper, 2 species of sea bass, barramundi, rock porgy, and Japanese flounder showed CPE characterized by rounded, granular cells with heavy cytoplasmic vacuoles within 3 d post-incubation (p.i.), and the monolayer partially or completely disintegrated over 3 to 6 d p.i. Scattered FAT-positive cells appeared at 3 h p.i. and spread through the cell sheet with an increasing fluorescence signal over 24 h p.i. Group 2, consisting of 3 virus isolates from striped jack, induced CPE with thin or rounded, granular, refractile cells without conspicuous vacuole formation, and extensive FAT-positive reaction was observed in a time course similar to that of Group 1. Cells inoculated with Group 3 (1 isolate from tiger puffer) developed no distinct CPE but viral infection was evidenced by localized FAT-positive cells. There were no FAT-positive cells in Group 4, which included 4 isolates from Japanese flounder, Pacific cod and Atlantic halibut. However, when incubation was performed at 20 degrees C, the SSN-1 cells inoculated with the Group 3 isolate showed CPE similar to that of Group 1 and extensive FAT-positive reaction. Evidence of virus proliferation at 20 degrees C was also obtained in Group 4 isolates. The virus titers in the infected fish varied from 10(11) to 10(16) tissue culture infectious dose (TCID50) g(-1) of fish. There is a good correlation between these infectivities to the SSN-1 cells and the coat protein gene genotypes of the isolates. The present results indicate that SSN-1 cells are useful for propagating and differentiating genotypic variants of piscine nodavirus.  相似文献   
963.
The amelogenin (AMEL) gene exists on both sex chromosomes of various mammalian species and the length and sequence of the noncoding regions differ between the two chromosome-specific alleles. Because both forms can be amplified using a single primer set, the use of AMEL in polymerase chain reaction (PCR)-based methods has facilitated sex identification in various mammalian species, including cattle, sheep and humans. In this study, we designed PCR primers to yield different-sized products from the AMEL genes on the X (AMELX) and Y (AMELY) chromosomes of pigs. PCR amplification of genomic DNA samples collected from various breeds of pigs (European breeds: Landrace, Large White, Duroc and Berkshire; Chinese breeds: Meishan and Jinhua and their crossbreeds) yielded the expected products. For all breeds, DNA from male pigs produced two bands (520 and 350 bp; AMELX and AMELY, respectively), whereas samples from female pigs generated only the 520 bp product. We then tested the use of PCR of AMEL for sex identification of in vitro-produced (IVP) porcine embryos sampled at 2 or 5 to 6 days after fertilization; germinal vesicle (GV)-stage oocytes and electroactivated embryos were used as controls. More than 88% of the GV-stage oocytes and electroactivated embryos yielded a single 520 bp single band and about 50% of the IVP embryos tested produced both bands. Our findings show that PCR analysis of the AMEL gene is reliable for sex identification of pigs and porcine embryos.  相似文献   
964.
Pharaonis phoborhodopsin (ppR), also called pharaonis sensory rhodopsin II, NpSRII, is a photoreceptor of negative phototaxis in Natronomonas (Natronobacterium) pharaonis. The photocycle rate of ppR is slow compared to that of bacteriorhodopsin, despite the similarity in their x-ray structures. The decreased rate of the photocycle of ppR is a result of the longer lifetime of later photo-intermediates such as M- (ppR(M)) and O-intermediates (ppR(O)). In this study, mutants were prepared in which mutated residues were located on the extracellular surface (P182, P183, and V194) and near the Schiff base (T204) including single, triple (P182S/P183E/V194T), and quadruple mutants. The decay of ppR(O) of the triple mutant was accelerated approximately 20-times from 690 ms for the wild-type to 36 ms. Additional mutation resulting in a triple mutant at the 204th position such as T204C or T204S further decreased the decay half-time to 6.6 or 8 ms, almost equal to that of bacteriorhodopsin. The decay half-times of the ppR(O) of mutants (11 species) and those of the wild-type were well-correlated with the pK(a) value of Asp-75 in the dark for the respective mutants as spectroscopically estimated, although there are some exceptions. The implications of these observations are discussed in detail.  相似文献   
965.
We studied the role of monocyte chemoattractant (MCP)-4/CCL13 in the pathogenesis of rheumatoid arthritis (RA). MCP-4 was highly expressed in cartilage from RA patients. Interferon-gamma significantly stimulated MCP-4/CCL13 production in human chondrocytes, and this effect was enhanced in combination with interleukin-1beta or tumor necrosis factor-alpha. MCP-4/CCL13 induces the phosphorylation of extracellular signal-regulated kinase in fibroblast-like synoviocytes and activates cell proliferation, and PD98059 completely inhibits these effects. These data suggest that interferon-gamma in combination with interleukin-1beta/tumor necrosis factor-alpha activates the production of MCP-4/CCL13 from chondrocytes in RA joints, and that secreted MCP-4/CCL13 enhances fibroblast-like synoviocyte proliferation by activating the extracellular signal-regulated kinase mitogen-activated protein kinase cascade.  相似文献   
966.
In livestock, parthenogenic embryos are simple to produce, but androgenetic embryos have been successfully produced only in sheep and cows. In the present study, matured porcine oocytes were enucleated by micromanipulation and then fertilized with sperm in vitro, thereby producing porcine androgenetic embryos. Porcine androgenetic embryos, which had only sperm genomes, were assessed for cleavage and for blastocyst formation 2 and 6 d after IVF, respectively. There was no difference in cleavage rate between androgenetic embryos and biparental IVF embryos (mean ± SD androgenetic: 65.5 ± 5.4%; biparental IVF: 63.2 ± 3.6%), but there was a difference in the rate of blastocyst formation (androgenetic: 4.5 ± 0.7%; biparental IVF: 30.2 ± 2.6%, P < 0.05). The average number of cells in Day 6 androgenetic blastocysts (34.3 ± 18.2) was lower (P < 0.05) than that in biparental IVF blastocysts (44.1 ± 19.5), but did not differ from that in parthenogenetic embryos (35.7 ± 16.7). The androgenetic embryos were transferred into recipient mothers to examine the competence of post-implantation development. Androgenetic fetuses were present on Days 21 and 25, but not on Days 28, 31, or 35. Of the six androgenetic fetuses recovered on Day 21, five had normal, translucent bodies, and two of these five had beating hearts. The four fetuses recovered on Day 25 were all non-viable. In conclusion, porcine androgenetic embryos initiated embryogenesis and had reached a viable fetal stage 21 days after IVF.  相似文献   
967.
Studies have suggested that continuous Wnt/beta-catenin signaling in nascent cartilaginous skeletal elements blocks chondrocyte hypertrophy and endochondral ossification, whereas signaling starting at later stages stimulates hypertrophy and ossification, indicating that Wnt/beta-catenin roles are developmentally regulated. To test this conclusion further, we created transgenic mice expressing a fusion mutant protein of beta-catenin and LEF (CA-LEF) in nascent chondrocytes. Transgenic mice had severe skeletal defects, particularly in limbs. Growth plates were totally disorganized, lacked maturing chondrocytes expressing Indian hedgehog and collagen X, and failed to undergo endochondral ossification. Interestingly, the transgenic cartilaginous elements were ill defined, intermingled with surrounding connective and vascular tissues, and even displayed abnormal joints. However, when activated beta-catenin mutant (delta-beta-catenin) was expressed in chondrocytes already engaged in maturation such as those present in chick limbs, chondrocyte maturation and bone formation were greatly enhanced. Differential responses to Wnt/beta-catenin signaling were confirmed in cultured chondrocytes. Activation in immature cells blocked maturation and actually de-stabilized their phenotype, as revealed by reduced expression of chondrocyte markers, abnormal cytoarchitecture, and loss of proteoglycan matrix. Activation in mature cells instead stimulated hypertrophy, matrix mineralization, and expression of terminal markers such as metalloprotease (MMP)-13 and vascular endothelial growth factor. Because proteoglycans are crucial for cartilage function, we tested possible mechanisms for matrix loss. Delta-beta-catenin expression markedly increased expression of MMP-2, MMP-3, MMP-7, MMP-9, MT3-MMP, and ADAMTS5. In conclusion, Wnt/beta-catenin signaling regulates chondrocyte phenotype, maturation, and function in a developmentally regulated manner, and regulated action by this pathway is critical for growth plate organization, cartilage boundary definition, and endochondral ossification.  相似文献   
968.
969.
970.
Galectin-1(Gal-1), a carbohydrate-binding protein with an affinity for β-galactoside, is widely expressed in various normal and pathological tissues and it also plays an important role in regulating immune cell homeostasis and tumorigenesis. This study investigated the effects of restraint stress on serum Gal-1 by Western blot analyses and enzyme-linked immunosorbent assays. The Gal-1 levels of the restraint-stress group were significantly higher than those of the control group. However, this increase by stress was not obvious in adolescent rats. The pattern of these changes was similar to that of corticosterone. Furthermore, this Gal-1 increase in the serum was prevented by pre-treatment with a neurotoxin 6-hydroxydopamine (6-OHDA), which destroys the noradrenergic nerve terminals. However, a bilateral adrenalectomy (ADX) had no effect on the Gal-1 increase. These results suggest that Gal-1 is a candidate stress marker protein and that the stress-induced increase of Gal-1 in serum is regulated by the sympathetic nervous system under stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号