首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1182篇
  免费   91篇
  国内免费   2篇
  2023年   3篇
  2022年   6篇
  2021年   9篇
  2020年   7篇
  2019年   12篇
  2018年   15篇
  2017年   4篇
  2016年   16篇
  2015年   31篇
  2014年   33篇
  2013年   56篇
  2012年   51篇
  2011年   58篇
  2010年   36篇
  2009年   45篇
  2008年   70篇
  2007年   60篇
  2006年   64篇
  2005年   69篇
  2004年   60篇
  2003年   53篇
  2002年   62篇
  2001年   59篇
  2000年   48篇
  1999年   43篇
  1998年   12篇
  1997年   20篇
  1996年   6篇
  1995年   14篇
  1994年   5篇
  1993年   11篇
  1992年   23篇
  1991年   27篇
  1990年   19篇
  1989年   19篇
  1988年   23篇
  1987年   16篇
  1986年   12篇
  1985年   13篇
  1984年   12篇
  1983年   10篇
  1982年   9篇
  1981年   8篇
  1975年   9篇
  1974年   6篇
  1973年   3篇
  1972年   3篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
排序方式: 共有1275条查询结果,搜索用时 15 毫秒
951.
Cytotechnology - Perilla frutescens (L.) Britton var. frutescens (egoma in Japan) is a traditional oilseed that has several varieties with different photoperiod responses. Although egoma pomace,...  相似文献   
952.
Journal of Molecular Histology - Endocrine secretory granules (ESGs) are morphological characteristics of endocrine/neuroendocrine cells and store peptide hormones/neurotransmitters. ESGs contain...  相似文献   
953.
Cells preconditioned with low doses of low-linear energy transfer (LET) ionizing radiation become more resistant to later challenges of radiation. The mechanism(s) by which cells adaptively respond to radiation remains unclear, although it has been suggested that DNA repair induced by low doses of radiation increases cellular radioresistance. Recent gene expression profiles have consistently indicated that proteins involved in the nucleotide excision repair pathway are up-regulated after exposure to ionizing radiation. Here we test the role of the nucleotide excision repair pathway for adaptive response to gamma radiation in vitro. Wild-type CHO cells exhibited both greater survival and fewer HPRT mutations when preconditioned with a low dose of gamma rays before exposure to a later challenging dose. Cells mutated for ERCC1, ERCC3, ERCC4 or ERCC5 did not express either adaptive response to radiation; cells mutated for ERCC2 expressed a survival adaptive response but no mutation adaptive response. These results suggest that some components of the nucleotide excision repair pathway are required for phenotypic low-dose induction of resistance to gamma radiation in mammalian cells.  相似文献   
954.
Heat-treated Escherichia coli producing Thermus polyphosphate kinase regenerated ATP by using exogenous polyphosphate. This recombinant could be used as a platform to produce valuable compounds in combination with thermostable phosphorylating or energy-requiring enzymes. In this work, we demonstrated the production of fructose 1,6-diphosphate from fructose and polyphosphate.  相似文献   
955.
Interactions between advanced glycation endproducts (AGE) and the receptor for AGE (RAGE) have been implicated in the development of diabetic vascular complications. RAGE has two N-glycosylation sites in and near the AGE-binding domain, and G82S mutation in the second N-glycosylation motif was recently reported in human. In this study, we examined whether de-N-glycosylation or G82S of RAGE affect its ability to bind AGE and cellular response to AGE. Recombinant wild-type, de-N-glycosylation and G82S RAGE proteins were produced in COS-7 cells, purified and assayed for ligand-binding abilities. De-N-glycosylation at N81 and G82S mutation decreased Kd for glycolaldehyde-derived AGE to three orders of magnitude lower levels compared with wild-type. AGE-induced upregulation of VEGF mRNA was significantly augmented in endothelial cell-derived ECV304 cells expressing de-N-glycosylated and G82S RAGE when compared with wild-type expressor. Exposure to low glucose resulted in the appearance of RAGE proteins of deglycosylated size in wild-type RAGE-expressing cells and significantly enhanced glycolaldehyde-derived AGE-induced VEGF mRNA expression. De-N-glycosylation or G82S mutation of RAGE increases affinity for AGE ligands, and may sensitize cells or conditions with it to AGE.  相似文献   
956.
Using a large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese type 2 diabetic patients, we have identified a gene encoding neurocalcin δ (NCALD) as a candidate for a susceptibility gene to diabetic nephropathy; the landmark SNP was found in the 3′ UTR of NCALD (rs1131863: exon 4 +1340 A vs. G, P = 0.00004, odds ratio = 1.59, 95% CI 1.27–1.98). We also discovered two other SNPs in exon 4 of this gene (+999 T/A, +1307 A/G) that showed absolute linkage disequilibrium to the landmark SNP. Subsequent in vitro functional analysis revealed that synthetic mRNA corresponding to the disease susceptible haplotype (exon 4 +1340 G, +1307 G, +999 A) was degraded faster than mRNA corresponding to the major haplotype (exon 4 +1340 A, +1307 A, +999 T), and allelic mRNA expression of the disease susceptibility allele was significantly lower than that of the major allele in normal kidney tissues. In an experiment using a short interfering RNA targeting NCALD, we found that silencing of the NCALD led to a considerable enhancement of cell migration, accompanied by a significant reduction in E-cadherin expression, and by an elevation of α smooth muscle actin expression in cultured renal proximal tubular epithelial cells. We also identified the association of the landmark SNP with the progression of diabetic nephropathy in a 8-year prospective study (A vs. G, P = 0.03, odds ratio = 1.91, 95% CI 1.07–3.42). These results suggest that the NCALD gene is a likely candidate for conferring susceptibility to diabetic nephropathy. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
957.
Certain C-terminal sequences of nascent peptide cause an efficient protein tagging by tmRNA system at stop codons in Escherichia coli. Here, we demonstrate that both mRNA cleavage and tmRNA tagging occur at UAG stop codon recognized specifically by polypeptide release factor 1 (RF-1) when the activity of RF-1 is reduced by a mutation in the prfA gene without requirement of particular C-terminal sequences of nascent peptide. The tmRNA tagging and mRNA cleavage in the prfA mutant were eliminated when the wild-type RF-1 but not RF-2 was supplied from plasmid. In addition, depletion of either RF-1 or RF-2 induces endonucleolytic cleavage and tmRNA tagging at UAG or UGA stop codons respectively. We conclude that ribosome stalling at the cognate stop codon caused by reduced activity or expression of RF-1 or RF-2 is responsible for mRNA cleavage. The present data along with our previous studies strongly suggest that ribosome stalling leads to endonucleolytic cleavage of mRNA in general resulting in non-stop mRNA and that the 3' end of non-stop mRNA is probably only target for the tmRNA system.  相似文献   
958.
959.
960.
Hypophysectomy (HX) arrests bone growth and induces osteopenia in the long bones of rats. The present study investigated the combined effect of vitamin K(2) and risedronate on long bone mass in HX rats, in order to determine whether treatment with these two agents had an additive effect. Forty female Sprague-Dawley rats were hypophysectomized at 6 weeks of age by the supplier, and were shipped to our laboratory at three days after surgery along with ten intact rats that served as age-matched controls. The study was started on the day when the rats were received. Three HX rats were excluded from the study because of the failure of HX. Forty-seven rats (6 weeks old) were assigned to the following 5 groups by the stratified weight randomization method: intact controls, HX alone, HX + vitamin K(2) (30 mg/kg, p.o., daily), HX + risedronate (2.5 microg/kg, s.c., 5 days a week), and HX + vitamin K(2) + risedronate. The dosing period was 4 weeks. HX resulted in a decrease of the femoral bone area, bone mineral content (BMC) and bone mineral density (BMD), as well as a decrease in the cancellous bone mass of the proximal tibial metaphysis and the total tissue and cortical areas of the tibial diaphysis. These changes were associated with a marked reduction in the serum level of insulin like growth factor (IGF)-I and with elevation of serum alkaline phosphatase (ALP) and pyridinoline. Administration of vitamin K(2) increased the serum ALP level in HX rats, but did not affect any of the other parameters. On the other hand, risedronate ameliorated the decrease of femoral BMD and cancellous bone mass at the proximal tibial metaphysis in HX rats without affecting the serum IGF-I level, as a result of not causing a significant elevation of serum pyridinoline. Vitamin K(2) and risedronate combined had an additive effect on the femoral bone area, BMC and BMD, and the combined treatment group did not show any significant reduction of the total tissue and cortical areas at the tibial diaphysis, as well as a reduced serum pyridinoline level compared with untreated rats and an increased serum ALP level compared with untreated or risedronate-treated rats. These results suggest that risedronate had a positive effect on the BMD and cancellous bone mass of long bones in HX rats. Despite the lack of a significant effect of vitamin K(2) on bone mass parameters, it had an additive effect with risedronate on the BMC, BMD and cortical bone mass of long bones in HX rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号