首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   29篇
  348篇
  2015年   7篇
  2014年   4篇
  2013年   11篇
  2012年   8篇
  2011年   16篇
  2010年   7篇
  2009年   10篇
  2008年   7篇
  2007年   11篇
  2006年   7篇
  2005年   9篇
  2004年   16篇
  2003年   11篇
  2002年   10篇
  2001年   8篇
  2000年   10篇
  1999年   8篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   10篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1982年   4篇
  1980年   8篇
  1979年   5篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   11篇
  1974年   10篇
  1973年   5篇
  1972年   7篇
  1971年   7篇
  1970年   5篇
  1966年   4篇
  1965年   4篇
  1961年   2篇
  1959年   2篇
  1933年   2篇
  1928年   3篇
  1908年   2篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
71.
72.
Various aliphatic and aromatic amines are oxidized by sodium metaperiodate and these reactions have been studied quantitatively in acidic, unbuffered and basic media. Significant differences have been observed between the behaviour of aliphatic and aromatic amines. Certain compounds also behaved differently under acidic and basic conditions. These reactions are related to the periodate oxidation of amino acids and, from observations on a number of glycine derivatives, a reaction mechanism is proposed for this process.  相似文献   
73.
While characterizing the cat eye syndrome (CES) supernumerary chromosome for the presence of immunoglobulin gene region sequences, a lymphoblastoid cell line from one CES patient was identified in which there was selection of cells deleted for some IGLC and IGLV genes. Two distinct deletions, one on each chromosome 22, were identified, presumably arising from independent somatic recombination events occuring during B-lymphocyte differentiation. The extent of the deleted region was determined using probes from the various IGLV subgroups and they each cover at least 82 kilobases. The precise definition of the deletions was not possible because of conservation of some restriction sites in the IGLV region. The cell line was used to map putative IGLV genes within the recombinant phage V135 to the distal part of the IGLV gene region. Since the deletions are relatively small, the cell line will be valuable for mapping IGLV genes in the distal part of this region.  相似文献   
74.
75.
76.
The reduction of nitrite (NO2) into nitric oxide (NO), catalyzed by nitrite reductase, is an important reaction in the denitrification pathway. In this study, the catalytic mechanism of the copper-containing nitrite reductase from Alcaligenes xylosoxidans (AxNiR) has been studied using single and multiple turnover experiments at pH 7.0 and is shown to involve two protons. A novel steady-state assay was developed, in which deoxyhemoglobin was employed as an NO scavenger. A moderate solvent kinetic isotope effect (SKIE) of 1.3 ± 0.1 indicated the involvement of one protonation to the rate-limiting catalytic step. Laser photoexcitation experiments have been used to obtain single turnover data in H2O and D2O, which report on steps kinetically linked to inter-copper electron transfer (ET). In the absence of nitrite, a normal SKIE of ∼1.33 ± 0.05 was obtained, suggesting a protonation event that is kinetically linked to ET in substrate-free AxNiR. A nitrite titration gave a normal hyperbolic behavior for the deuterated sample. However, in H2O an unusual decrease in rate was observed at low nitrite concentrations followed by a subsequent acceleration in rate at nitrite concentrations of >10 mm. As a consequence, the observed ET process was faster in D2O than in H2O above 0.1 mm nitrite, resulting in an inverted SKIE, which featured a significant dependence on the substrate concentration with a minimum value of ∼0.61 ± 0.02 between 3 and 10 mm. Our work provides the first experimental demonstration of proton-coupled electron transfer in both the resting and substrate-bound AxNiR, and two protons were found to be involved in turnover.Denitrification is an anaerobic respiration pathway found in bacteria, archaea, and fungi, in which ATP synthesis is coupled to the sequential reduction of nitrate (NO3) and nitrite (NO2) (NO3 → NO2 → NO → N2O → N2) (13).3 The first committed step in this reaction cascade is the formation of gaseous NO by nitrite reductase (NiR), the key enzyme of this pathway. Two distinct classes of periplasmic NiR are found in denitrifying bacteria, one containing cd1 hemes as prosthetic groups (46) and the other utilizing two copper centers to catalyze the one-electron reduction of nitrite (7). Copper-containing NiRs are divided into two main groups according to the color of their oxidized type 1 copper center (T1Cu), with shades ranging from blue to green (3, 7). NiR from Alcaligenes xylosoxidans subsp. xylosoxidans (NCIMB 11015, AxNiR), which is analyzed in this study, is a member of the blue CuNiR group. The blue and green subclasses show a high degree of sequence similarity (70%) (8) and have similar trimeric structures with each monomer (∼36.5 kDa in AxNiR) consisting of two greek key β-barrel cupredoxin-like motifs as well as one long and two short α-helical regions (7, 9).Each NiR monomer contains two copper-binding sites per catalytic unit. One is a T1Cu center, which receives electrons from a physiological redox partner protein and is buried 7 Å beneath the protein surface (10), and the other copper is a type 2 center (T2Cu), constituting the catalytically active substrate-binding site (11). The physiological electron donor for the blue NiRs are the small copper protein azurin (14 kDa) (7) and cytochrome c551 (7, 12, 13). The T1Cu, which is responsible for the color of NiR, serves as the electron delivery center and is coordinated by two histidine residues as well as one cysteine and one methionine residue. The catalytic T2Cu, which like all T2Cu centers has very weak optical bands, is ligated to three His residues and an H2O/OH ligand in the resting state. This H2O/OH ligand is held in place by hydrogen bonds to the active site residues, Asp-92 (AxNiR numbering) and His-249, and gets displaced by the substrate during catalytic turnover (14). The T2Cu is located at the base of a 13–14-Å substrate access channel at the interface of two monomers with one of the three His residues being part of the adjacent subunit (15, 16). The two copper centers are connected by a 12.6-Å covalent bridge provided by the T1Cu-coordinating Cys and by one of the T2Cu His ligands (17, 18). This linkage has been suggested to constitute the electron transfer (ET) pathway from the T1Cu center to the catalytically active T2Cu center via 11 covalent bonds (19).Intramolecular ET from T1- to T2Cu has been extensively examined using pulse radiolysis studies (7, 1924). In a variety of NiR species, ET could be measured, both in the presence and absence of substrate, with observed ET rate constants (kET(obs)) ranging from ∼150 to ∼2000 s−1. According to the Marcus semi-classical ET theory (25), the redox potentials (E0, redox midpoint potential at pH 7.0) of the copper centers affect both the thermodynamic equilibrium and the ET kinetics. In the absence of substrate, the difference in the redox potentials has been found to be insignificant at pH 7 (E0 (T1Cu) ∼240 mV and E0 (T2Cu) ∼230 mV (20)), implying a thermodynamically equal electron distribution between the two metal centers. From an enzymatic point of view, however, approaching this equilibrium position on such a fast time scale (≥150 s−1) is unfavorable in the absence of substrate, as NiR has been shown to form an inactive species with a reduced T2Cu that is devoid of the H2O/OH ligand and unable to bind nitrite (26, 27). Substrate binding has been proposed to induce a favorable shift in the T2Cu redox potential, which would be expected to result in an accelerated ET compared with the substrate-free reaction (7, 16, 25, 2730). However, kET(obs) values in AxgNiR (GIFU1051) have been demonstrated to be lower in the nitrite-bound than in the substrate-free enzyme between pH 7.7 and 5.5 (21). Below pH 5.5, the ET rate constants were observed to be similar in the nitrite-free and -bound enzyme (21).In addition to changes in the redox potentials and thus in the driving force of the ET reaction, several structural changes in the redox centers have been reported as a result of substrate binding, which may also influence the inter-copper ET rate by changing the reorganization energy (16, 25, 30, 31). These rearrangements include subtle changes in the Cys-His bridge linking T1- and T2Cu (32) and conformational transitions of the catalytically relevant active site residue Asp-92 (see below and Ref. 29). Moreover, the presence of nitrite has been postulated to be relayed to the T1Cu site via the so-called substrate sensor loop (via His-94, Asp-92, and His-89 in AxNiR), thereby triggering ET to the T2Cu (19, 27, 29, 32). The tight coupling of ET to the presence of substrate has been argued to prevent the formation of a deactivated enzyme species with a prematurely reduced T2Cu (14, 16, 19, 26, 27, 33). In accordance with such a feedback mechanism, in a combined crystallographic and single-crystal spectroscopic study, inter-copper ET could only be detected in crystals where nitrite was bound to the T2Cu site, whereas in the absence of substrate no such ET was observed (34). This finding, however, contradicts the pulse radiolysis results at room temperature (see above), and the apparent discrepancy between solution studies and x-ray crystallographic data collected at cryogenic temperature remains to be resolved.The one-electron reduction of nitrite to NO involves two protons according to the chemical net equation NO2 + 2H+ + e → NO + H2O, if the T2Cu is ligated by an H2O molecule in the resting state rather than an OH ion. Although the exact enzymatic mechanism is still somewhat controversial (35, 36), one suggested reaction sequence is given in Scheme 1. The potential participation of active site residues in catalyzing the proton transfer (PT) steps has been investigated by studying the pH dependence of NiR under steady-state conditions as well as by pulse radiolysis. The trends obtained for kcat and kET(obs), are similar with pH optima between 5.2 and 6, indicating the involvement of two amino acid residues (21, 22, 37). Asp-92 and His-249 have been proposed as acid-base catalysts (18, 21, 22, 28, 38), and the abrupt drop in rates at increasing pH may indicate that OH can act as a competitive inhibitor for nitrite (39). The relevance of these active site residues, however, as well as the timing of the two protonation steps is still a matter of debate (35, 40, 41).4Open in a separate windowSCHEME 1.A potential reaction mechanism proposed for CuNiRs. Adapted from Ref. 36. Nitrite is shown to bind to the oxidized T2Cu as nitrous acid, thus involving the first protonation step. It coordinates to the oxidized T2Cu center in a bidentate fashion. Following inter-copper ET yielding a reduced T2Cu center, the initially deprotonated Asp-92 accepts a proton, which is subsequently transferred to the substrate. His-249 may be a potential source of this second proton. PT and ET reactions may be reversible and they may be concerted rather than sequential as suggested by the arrows. See text for further information.There are no experimental studies that have been aimed at directly examining the kinetic coupling of PT and ET steps in AxNiR. In this study of the blue AxNiR, our aims were to gain further insight into the mechanism of nitrite reduction by combining multiple turnover experiments with laser photoexcitation studies to measure the (single turnover) inter-copper ET. An extensive analysis of the solvent kinetic isotope effect (SKIE) has been employed as a means of determining whether solvent-exchangeable protons and/or water molecules play a rate-limiting role in the catalytic turnover and/or in inter-copper ET.  相似文献   
77.
78.
The complex cellular milieu can spontaneously demix, or phase separate, in a process controlled in part by intrinsically disordered (ID) proteins. A protein''s propensity to phase separate is thought to be driven by a preference for protein–protein over protein–solvent interactions. The hydrodynamic size of monomeric proteins, as quantified by the polymer scaling exponent (v), is driven by a similar balance. We hypothesized that mean v, as predicted by protein sequence, would be smaller for proteins with a strong propensity to phase separate. To test this hypothesis, we analyzed protein databases containing subsets of proteins that are folded, disordered, or disordered and known to spontaneously phase separate. We find that the phase-separating disordered proteins, on average, had lower calculated values of v compared with their non-phase-separating counterparts. Moreover, these proteins had a higher sequence-predicted propensity for β-turns. Using a simple, surface area-based model, we propose a physical mechanism for this difference: transient β-turn structures reduce the desolvation penalty of forming a protein-rich phase and increase exposure of atoms involved in π/sp2 valence electron interactions. By this mechanism, β-turns could act as energetically favored nucleation points, which may explain the increased propensity for turns in ID regions (IDRs) utilized biologically for phase separation. Phase-separating IDRs, non-phase-separating IDRs, and folded regions could be distinguished by combining v and β-turn propensity. Finally, we propose a new algorithm, ParSe (partition sequence), for predicting phase-separating protein regions, and which is able to accurately identify folded, disordered, and phase-separating protein regions based on the primary sequence.  相似文献   
79.
We used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for both gene function studies and use as new animal models of human disease (Nolan et al. 2000b). One focus of the program was the development of a blood biochemistry screen. At 8-12 weeks of age, approximately 300 ml of blood was collected from F1 offspring of ENU mutagenized male mice. This yielded approximately 125 ml of plasma, used to perform a profile of 17 standard biochemical tests on an Olympus analyzer. Cohorts of F1 mice were also aged and then retested to detect late onset phenotypes. In total, 1,961 F1s were screened. Outliers were identified by running means and standard deviations. Of 70 mice showing consistent abnormalities in plasma biochemistry, 29 were entered into inheritance testing. Of these, 9 phenotypes were confirmed as inherited, 10 found not to be inherited, and 10 are still being tested. Inherited mutant phenotypes include abnormal lipid profiles (low total and HDL cholesterol, high triglycerides); abnormalities in bone and liver metabolism (low ALP, high ALP, high ALT, and AST); abnormal plasma electrolyte levels (high sodium and chloride); as well as phenotypes of interest for the study of diabetes (high glucose). The gene loci bearing the mutations are currently being mapped and further characterized. Our results have validated our biochemical screen, which is applicable to other mutagenesis projects, and we have produced a new set of mutants with defined metabolic phenotypes.  相似文献   
80.
Hormonal responses to exercise could be used as a marker of overreaching. A short exercise protocol that induces robust hormonal elevations in a normal trained state should be able to highlight hormonal changes during overreaching. This study compared plasma and salivary cortisol and testosterone responses to 4 exercise trials; these were (a) continuous cycle to fatigue at 75% peak power output (Wmax) (FAT); (b) 30-minute cycle alternating 1-minute 60% and 1 minute 90% Wmax (60/90); (c) 30-minute cycle alternating 1-minute 55% and 4-minute 80% Wmax (55/80); and (d) Squatting 8 sets of 10 repetitions at 10 repetition maximum (RESIST). Blood and saliva samples were collected pre-exercise and at 0, 10, 20, 30, 40, 50, and 60 minute postexercise. Pre- to postexercise plasma cortisol increased in all exercise trials, except 60/90. Increases in 55/80 remained above pre-exercise levels for the entire postexercise period. Salivary cortisol increased from pre- to postexercise in FAT and 55/80 trials only. Once elevated after 55/80, it remained so for the postexercise period. Plasma testosterone increased from pre- to postexercise in all trials except 55/80. Saliva testosterone increased from pre- to postexercise in all trials with the longest elevation occurring after 55/80. Area under the curve analysis indicated that the exercise response of salivary hormones was greater in all cycle trials (cortisol) and in the 60/90 and 55/80 trials (testosterone) compared with the other trials. This study indicates that the 55/80 cycle protocol induces a prolonged salivary and plasma cortisol and salivary testosterone response compared with the other trials and so may be a useful diagnostic tool of overreaching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号