首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
  71篇
  2024年   1篇
  2022年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   2篇
  1924年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
31.
Genetic variation in bitter taste receptors, such as hTAS2R38, may affect food preferences and intake. The aim of the present study was to investigate the association between bitter taste receptor haplotypes and the consumption of vegetables, fruits, berries and sweet foods among an adult Finnish population. A cross-sectional design utilizing data from the Cardiovascular Risk in Young Finns cohort from 2007, which consisted of 1,903 men and women who were 30–45 years of age from five different regions in Finland, was employed. DNA was extracted from blood samples, and hTAS2R38 polymorphisms were determined based on three SNPs (rs713598, rs1726866 and rs10246939). Food consumption was assessed with a validated food frequency questionnaire. The prevalence of the bitter taste-sensitive (PAV/PAV) haplotype was 11.3 % and that of the insensitive (AVI/AVI) haplotype was 39.5 % among this Finnish population. PAV homozygotic women consumed fewer vegetables than did the AVI homozygotic women, 269 g/day (SD 131) versus 301 g/day (SD 187), respectively, p = 0.03 (multivariate ANOVA). Furthermore, the intake of sweet foods was higher among the PAV homozygotes of both genders. Fruit and berry consumption did not differ significantly between the haplotypes in either gender. Individuals perceive foods differently, and this may influence their patterns of food consumption. This study showed that the hTAS2R38 taste receptor gene variation was associated with vegetable and sweet food consumption among adults in a Finnish population.  相似文献   
32.
Nonalcoholic fatty liver (NAFL) is a common comorbidity in patients with type 2 diabetes and links to the risk of coronary syndromes. The aim was to determine the manifestations of metabolic syndrome in different organs in patients with liver steatosis. We studied 55 type 2 diabetic patients with coronary artery disease using positron emission tomography. Myocardial perfusion was measured with [15O]H2O and myocardial and skeletal muscle glucose uptake with 2-deoxy-2-[18F]fluoro-D-glucose during hyperinsulinemic euglycemia. Liver fat content was determined by magnetic resonance proton spectroscopy. Patients were divided on the basis of their median (8%) into two groups with low (4.6 +/- 2.0%) and high (17.4 +/- 8.0%) liver fat content. The groups were well matched for age, BMI, and fasting plasma glucose. In addition to insulin resistance at the whole body level (P = 0.012) and muscle (P = 0.002), the high liver fat group had lower insulin-stimulated myocardial glucose uptake (P = 0.040) and glucose extraction rate (P = 0.0006) compared with the low liver fat group. In multiple regression analysis, liver fat content was the most significant explanatory variable for myocardial insulin resistance. In addition, the high liver fat group had increased concentrations of high sensitivity C-reactive protein, soluble forms of E-selectin, vascular adhesion protein-1, and intercellular adhesion molecule-1 (P < 0.05) and lower coronary flow reserve (P = 0.02) compared with the low liver fat group. In conclusion, in patients with type 2 diabetes and coronary artery disease, liver fat content is a novel independent indicator of myocardial insulin resistance and reduced coronary functional capacity. Further studies will reveal the effect of hepatic fat reduction on myocardial metabolism and coronary function.  相似文献   
33.
34.
35.
OBJECTIVE: To study the association between apolipoprotein E (apoE) genotype and the rate of decline in glomerular filtration rate (GFR) in type 2 diabetic patients in a 9-year prospective study. METHODS: GFR was determined in 84 type 2 diabetic patients by plasma clearance of (51)Cr-EDTA at baseline and after 9 years of follow-up. ApoE genotypes were determined by polymerase chain reaction and restriction enzyme HHAI digestion and designated as epsilon4 allele group (apoE4/2, 4/3 and 4/4 genotypes; n = 20) and non-epsilon4 allele group (apoE3/3 and E3/2 genotypes; n = 64). We focused our analysis on those patients who were more likely to progress to diabetic renal disease, i.e. whose GFR fell more than expected in the normal course of ageing [1 ml x min(-1) x (1.73 m(2))(-1) per year]. RESULTS: In the whole population, the decline in the GFR did not differ statistically significantly between the apoE genotype groups [p = 0.65 with analysis of variance for repeated variables (RANOVA) for interaction between apoE genotype group and time point]. However, among patients whose GFR changed more than 9 ml x min(-1) x (1.73 m(2))(-1), GFR showed a statistically significantly greater decline in the epsilon4 allele group (n = 11) than in the non-epsilon4 allele group (n = 43) [from 116 +/- 36 to 80 +/- 29 ml x min(-1) x (1.73 m(2))(-1) vs. from 119 +/- 20 to 96 +/- 18 ml x min(-1) x (1.73 m(2))(-1); p = 0.005 with RANOVA]. CONCLUSION: ApoE allele epsilon4 may speed up the rate of decline of the GFR in patients with progressive diabetic renal disease.  相似文献   
36.
Chronic renal failure (CRF) is associated with abnormal lipid metabolism and high prevalence of vascular complications. Calcium salts are commonly used in CRF as phosphate binders. Increased calcium intake may also lower plasma cholesterol and beneficially influence vascular tone. Therefore, we investigated the influence of increasing dietary calcium from 0.3% to 3.0% for 8 wk after 5/6 nephrectomy (NTX) on plasma cholesterol and mesenteric resistance vessel tone in male Sprague-Dawley rats. The groups were Sham, Sham-Calcium, NTX, and NTX-Calcium (n = 10-11). Blood pressure was modestly elevated after NTX, whereas the plasma creatinine, urea nitrogen, phosphate, and parathyroid hormone levels were clearly increased. The high-calcium diet suppressed plasma phosphate and parathyroid hormone but was without effect on blood pressure. The NTX resulted in 1.6-fold elevation in plasma total cholesterol and 40% reduction in high density-to-low density lipoprotein ratio (HDL/LDL). However, the lipid profile in NTX rats on the high-calcium diet did not differ from sham-operated controls. The endothelium-mediated relaxations induced by acetylcholine were impaired in NTX rats, whereas the response was normalized by a high-calcium diet. No differences in vasorelaxations by the endothelium-independent vasodilator nitroprusside were detected. In conclusion, improved vasorelaxation after a high-calcium diet could be due to reduced plasma total cholesterol and ameliorated HDL/LDL ratio, although decreased plasma phosphate and parathyroid hormone may also play a significant role in the vascular effects of increased calcium intake.  相似文献   
37.
The activity of ornithine decarboxylase, the key enzyme in the synthesis of polyamines, is essential for proliferation and differentiation of all living cells. Two inhibitors of ornithine decarboxylase, α-difluoromethylornithine (DFMO) and 1-aminooxy-3-aminopropane (APA), caused swelling of endoplasmic reticulum (ER) and medial and trans Golgi cisternae, and the disappearance of stress fibers, as visualized by staining with fluorescent concanavalin A (ConA), C6-NBD-ceramide or wheat germ agglutinin (WGA), and phalloidin, respectively. In contrast, the pattern of microtubules, stained with a β-tubulin antibody, was not affected. Rough ER seemed to be especially affected in polyamine deprivation forming whorls and involutions, which were observed by transmission electron microscopy. Since ER and Golgi apparatus are vital parts of the glycosylation and secretory machinery of the cell, we tested the ability of these structurally altered cell organelles to synthesize proteoglycans using [3H]glucosamine and [35S]sulfate as precursors. The total incorporation rate into proteoglycans and hyaluronan was not reduced in polyamine-deprived cells, suggesting that the total glycosylation capacity of cells was not affected. However, the synthesis of a high molecular weight proteoglycan containing chondroitin and keratan sulfate was completely inhibited. The remodeling of cytoskeleton and rough endoplasmic reticulum in polyamine deprivation may perturb the synthesis and secretion of the components of membrane skeleton and of the extracellular matrix, e.g., proteoglycans. Rough ER and cytoskeleton may be the targets where polyamines affect cell proliferation and differentiation. J. Cell Biochem. 66:165-174, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
38.
Urinary tract infection (UTI) is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose) is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS) –based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA) and logistic regression (LR). The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures. In conclusion: These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI.  相似文献   
39.
40.

Background

Increased adiposity is linked with higher risk for cardiometabolic diseases. We aimed to determine to what extent elevated body mass index (BMI) within the normal weight range has causal effects on the detailed systemic metabolite profile in early adulthood.

Methods and Findings

We used Mendelian randomization to estimate causal effects of BMI on 82 metabolic measures in 12,664 adolescents and young adults from four population-based cohorts in Finland (mean age 26 y, range 16–39 y; 51% women; mean ± standard deviation BMI 24±4 kg/m2). Circulating metabolites were quantified by high-throughput nuclear magnetic resonance metabolomics and biochemical assays. In cross-sectional analyses, elevated BMI was adversely associated with cardiometabolic risk markers throughout the systemic metabolite profile, including lipoprotein subclasses, fatty acid composition, amino acids, inflammatory markers, and various hormones (p<0.0005 for 68 measures). Metabolite associations with BMI were generally stronger for men than for women (median 136%, interquartile range 125%–183%). A gene score for predisposition to elevated BMI, composed of 32 established genetic correlates, was used as the instrument to assess causality. Causal effects of elevated BMI closely matched observational estimates (correspondence 87%±3%; R 2 = 0.89), suggesting causative influences of adiposity on the levels of numerous metabolites (p<0.0005 for 24 measures), including lipoprotein lipid subclasses and particle size, branched-chain and aromatic amino acids, and inflammation-related glycoprotein acetyls. Causal analyses of certain metabolites and potential sex differences warrant stronger statistical power. Metabolite changes associated with change in BMI during 6 y of follow-up were examined for 1,488 individuals. Change in BMI was accompanied by widespread metabolite changes, which had an association pattern similar to that of the cross-sectional observations, yet with greater metabolic effects (correspondence 160%±2%; R 2 = 0.92).

Conclusions

Mendelian randomization indicates causal adverse effects of increased adiposity with multiple cardiometabolic risk markers across the metabolite profile in adolescents and young adults within the non-obese weight range. Consistent with the causal influences of adiposity, weight changes were paralleled by extensive metabolic changes, suggesting a broadly modifiable systemic metabolite profile in early adulthood. Please see later in the article for the Editors'' Summary  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号