首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   1篇
  92篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   2篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2007年   9篇
  2006年   7篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1988年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有92条查询结果,搜索用时 12 毫秒
71.
Differences in the carbohydrate composition were revealed among spores of fungi belonging to Zygomycetes, Ascomycota, Basidiomycota, and Oomycota, part of the novel kingdom Chromista. It was shown for the first time that Phytophthora infestans contains arabitol in addition to glucose and trehalose. Sucrose was detected in Pleurotus ostreatus basidiospores. It was established that Blakeslea trispora stylospores contain inositol. The dependence of the spore carbohydrate composition on the temperature of the habitat of the corresponding species is discussed. It was shown that the cytosol of the conidia is dominated by trehalose and inositol under hypothermic conditions and by mannitol and glucose under hyperthermic conditions. Neomycota and Eomycota were shown to differ in their responses to stress (starvation), which correlated with the differences in the carbohydrate composition of the spore cytosols. Assuming that cytosol carbohydrates perform a protective function, we explain the higher viability of conidia compared to stylo- and sporangiospores.  相似文献   
72.
ABSTRACT: BACKGROUND: The parathyroid hormone (PTH)-family consists of a group of structurally related factors that regulate calcium and bone homeostasis and are also involved in development of organs such as the heart, mammary gland and immune system. They interact with specific members of family 2 B1 G-protein coupled receptors (GPCRs), which have been characterised in teleosts and mammals. Two PTH/PTHrP receptors, PTH1R and PTH2R exist in mammals and in teleost fish a further receptor PTH3R has also been identified. Recently in chicken, PTHfamily members involved in calcium transport were characterized and specific PTHRs are suggested to exist although they have not yet been isolated or functionally characterized. The aim of this study is to further explore the evolution and function of the vertebrate PTH/PTHrP system through the isolation, phylogenetic analysis and functional characterization of the chicken receptors. RESULTS: Two PTHRs were isolated in chicken and sequence comparison and phylogenetic analysis indicate that the chicken receptors correspond to PTH1R and PTH3R, which emerged prior to the teleost/tetrapod divergence since they are present in cartilaginous fish. The vertebrate PTH2R receptor and its ligand TIP39 have been lost from bird genomes. Chicken PTH1R and PTH3R have a divergent and widespread tissue expression and are also evident in very early embryonic stages of development. Receptor stimulation studies using HEK293 cells stably expressing the chicken PTH1R and PTH3R and monitoring cAMP production revealed they are activated by chicken 1-34 N-terminal PTH-family peptides in a dose dependent manner. PTH-L and PTHrP were the most effective peptides in activating PTH1R (EC50 = 7.7 nM and EC50 = 22.7 nM, respectively). In contrast, PTH-L (100 nM) produced a small cAMP accumulation on activation of PTH3R but PTHrP and PTH (EC50 = 2.5 nM and EC50 = 22.1 nM, respectively) readily activated the receptor. PTHrP also stimulated intracellular Ca2+ accumulation on activation of PTH1R but not PTH3R. CONCLUSION: Two PTHR homologues of the vertebrate PTH1R and PTH3R were isolated and functionally characterized in chicken. Their distinct pattern of expression during embryo development and in adult tissues, together with their ligand preference, suggests that they have acquired specific functions, which have contributed to their maintenance in the genome. PTH2R and its activating ligand, TIP39, are absent from bird genomes. Nonetheless identification of putative PTH2R and TIP39 in the genome of an ancient agnathan, lamprey, suggests the PTH/PTHrP ligand and receptor family was already present in an early basal paraphyletic group of vertebrates and during the vertebrate radiation diverged via gene/genome duplication and deletion events. Knowledge of the role PTH/PTHrP system in early vertebrates will help to establish evolution of function.  相似文献   
73.
Due to a growing world population and increasing welfare, energy demand worldwide is increasing. To meet the increasing energy demand in a sustainable way, new technologies are needed. The Plant-Microbial Fuel Cell (P-MFC) is a technology that could produce sustainable bio-electricity and help meeting the increasing energy demand. Power output of the P-MFC, however, needs to be increased to make it attractive as a renewable and sustainable energy source. To increase power output of the P-MFC internal resistances need to be reduced. With a flat-plate P-MFC design we tried to minimize internal resistances compared to the previously used tubular P-MFC design. With the flat-plate design current and power density per geometric planting area were increased (from 0.15 A/m2 to 1.6 A/m2 and from 0.22 W/m2 to and 0.44 W/m2)as were current and power output per volume (from 7.5 A/m3 to 122 A/m3 and from 1.3 W/m3 to 5.8 W/m3). Internal resistances times volume were decreased, even though internal resistances times membrane surface area were not. Since the membrane in the flat-plate design is placed vertically, membrane surface area per geometric planting area is increased, which allows for lower internal resistances times volume while not decreasing internal resistances times membrane surface area. Anode was split into three different sections on different depths of the system, allowing to calculate internal resistances on different depths. Most electricity was produced where internal resistances were lowest and where most roots were present; in the top section of the system. By measuring electricity production on different depths in the system, electricity production could be linked to root growth. This link offers opportunities for material-reduction in new designs. Concurrent reduction in material use and increase in power output brings the P-MFC a step closer to usable energy density and economic feasibility.  相似文献   
74.

Background

The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males.

Results

Using a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity.

Conclusions

This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-799) contains supplementary material, which is available to authorized users.  相似文献   
75.
76.
To be effective, antisense molecules should be stable in biological fluids, non-toxic, form stable and specific duplexes with target RNAs and readily penetrate through cell membranes without non-specific effects on cell function. We report herein that negatively charged DNA mimics representing chiral analogues of peptide nucleic acids with a constrained trans-4-hydroxy-N-acetylpyrrolidine-2-phosphonate backbone (pHypNAs) meet these criteria. To demonstrate this, we compared silencing potency of these compounds with that of previously evaluated as efficient gene knockdown molecules hetero-oligomers consisting of alternating phosphono-PNA monomers and PNA-like monomers based on trans-4-hydroxy-L-proline (HypNA-pPNAs). Antisense potential of pHypNA mimics was confirmed in a cell-free translation assay with firefly luciferase as well as in a living cell assay with green fluorescent protein. In both cases, the pHypNA antisense oligomers provided a specific knockdown of a target protein production. Confocal microscopy showed that pHypNAs, when transfected into living cells, demonstrated efficient cellular uptake with distribution in the cytosol and nucleus. Also, the high potency of pHypNAs for down-regulation of Ras-like GTPase Ras-dva in Xenopus embryos was demonstrated in comparison with phosphorodiamidate morpholino oligomers. Therefore, our data suggest that pHypNAs are novel antisense agents with potential widespread in vitro and in vivo applications in basic research involving live cells and intact organisms.  相似文献   
77.
78.
79.
The addition of plant oils to the growth medium stimulated growth and lipid synthesis in the fungus Blakeslea trispora. However, only oils with high content of linoleic and especially linolenic acid enhanced lycopene formation. The increase in lycopene formation was accompanied by accumulation in the neutral lipid fraction of the fatty acids prevailing in plant oils. In contrast, the influence of exogenous lipids on the fatty acid composition of bulk fungal phospholipids was insignificant. Nonetheless, a marked increase in the content of membrane lipids and of their phosphatidylethanolamine content was revealed. Presumably, the main mechanism of stimulation of lycopene formation by the oils involves an increase in the solubility of lycopene in the triacylglycerols of the lipid bodies, which is due to an increase in the desaturation degree of their fatty acids. The predominance of linoleic and especially of linolenic fatty acid in plant oils is regarded as a criterion for selecting the oil species for the purpose of intensifying lycopene synthesis.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号