首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   30篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   14篇
  2013年   16篇
  2012年   18篇
  2011年   18篇
  2010年   11篇
  2009年   25篇
  2008年   28篇
  2007年   24篇
  2006年   22篇
  2005年   24篇
  2004年   33篇
  2003年   15篇
  2002年   21篇
  2001年   20篇
  2000年   15篇
  1999年   15篇
  1998年   12篇
  1997年   4篇
  1996年   10篇
  1995年   9篇
  1994年   12篇
  1993年   3篇
  1992年   11篇
  1991年   12篇
  1990年   9篇
  1989年   8篇
  1988年   8篇
  1987年   5篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1979年   3篇
  1978年   4篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1966年   2篇
排序方式: 共有512条查询结果,搜索用时 281 毫秒
461.
A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.  相似文献   
462.
Our studies have focused on the effect of injection of L-NAME and sodium nitroprussiate (SNP) on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine which was injected into the medial septal area (MSA). Rats were anesthetized with urethane (1.25 g/kg b. wt.) and a stainless steel cannula was implanted into their MSA. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into MSA. Injection of pilocarpine (10, 20, 40, 80, 160 microg/microl) into MSA produced a dose-dependent increase in salivary secretion. L-NG-nitro arginine methyl-esther (L-NAME) (40 microg/microl), a nitric oxide (NO) synthase inhibitor, was injected into MSA prior to the injection of pilocarpine into MSA, producing an increase in salivary secretion due to the effect of pilocarpine. Sodium nitroprussiate (SNP) (30 microg/microl) was injected into MSA prior to the injection of pilocarpine into MSA attenuating the increase in salivary secretion induced by pilocarpine. Medial arterial pressure (MAP) increase after injections of pilocarpine into the MSA. L-NAME injected into the MSA prior to injection of pilocarpine into MSA increased the MAP. SNP injected into the MSA prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (40 ug/ul) injected into the MAS induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the MSA increased the urinary sodium excretion and urinary volume induced by pilocarpine. SNP injected prior to pilocarpine into the MSA decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the MSA. We may also conclude that the MSA is involved with the cholinergic excitatory mechanism that induce salivary secretion, increase in MAP and increase in sodium excretion and urinary volume.  相似文献   
463.
Serine phosphorylation of the ShcA signaling molecule has been reported recently. In this work, we have identified 12-O-tetradecanoylphorbol-13-acetate (TPA)- and growth factor-induced serine/threonine phosphorylation sites in p52(Shc) and p66(Shc). Among them, Ser(29) in p52(Shc) (equivalent to Ser(138) in p66(Shc)) was phosphorylated only after TPA stimulation. Phosphorylation of this site together with the intact phosphotyrosine-binding domain was essential for ShcA binding to the protein-tyrosine phosphatase PTP-PEST. TPA-induced ShcA phosphorylation at this site (and hence, its association with PTP-PEST) was inhibited by a protein kinase C-specific inhibitor and was induced by overexpression of constitutively active mutants of protein kinase Calpha, -epsilon, and -delta isoforms. Insulin also induced ShcA/PTP-PEST association, although to a lesser extent than TPA. Overexpression of a PTP-PEST binding-defective mutant of p52(Shc) (S29A) enhanced insulin-induced ERK activation in insulin receptor-overexpressing HIRc-B cells. Consistent with this, p52(Shc) S29A was more tyrosine-phosphorylated than wild-type p52(Shc) after insulin stimulation. Thus, we have identified a new mechanism whereby serine phosphorylation of ShcA controls the ability of its phosphotyrosine-binding domain to bind PTP-PEST, which is responsible for the dephosphorylation and down-regulation of ShcA after insulin stimulation.  相似文献   
464.
Although color vision deficiency is very rare among Old World monkeys and apes, one male chimpanzee (Lucky) was identified as protanomalous by genetic and physiological analyses. This study assessed behavioral phenotypes of Lucky and four chimpanzees with normal color vision by discrimination task using the modified Ishihara pseudo-isochromatic plates. Lucky could not discriminate the stimuli that the other chimpanzees could. This is the first behavioral evidence of color vision deficiency in chimpanzees. Electronic Publication  相似文献   
465.
A novel series of 6-hydroxy-3-morpholinones, in which the functional aldehyde and the hydroxy group of P2 site form a cyclic hemiacetal, was identified as calpain inhibitors. The placement of isobutyl group at the 2-position of the 3-morpholinone was the most effective modification for inhibiting μ- and m-calpains. Substitutions of benzyl at the 5-position in the S-configuration had virtually no effect on inhibitory activity. Several compounds showed appreciable selectivity for calpains over cathepsin B. NMR experiments demonstrated that the representative 6-hydroxy-3-morpholinone 10a (SNJ-1757) was more stable to nucleophilic attack than the corresponding aldehyde inhibitor 24. Furthermore, 6-hydroxy-3-morpholinone 10a proved to have better corneal permeability than aldehyde inhibitor 24 in an in vitro experiment.  相似文献   
466.
The cytochrome oxidase subunit I gene in mitochondrial DNA of 53 larvae of Contarinia maculipennis Felt from flower buds of various host plants, collected from Hawaii, Japan and Thailand was analysed. Monophyly of the clade including C. maculipennis from Hawaii, Thailand and Japan was supported. There was no sequential variation within the specimens from Hawaii and Japan, which differed from one another by 6 bp (1.37%). Three haplotypes were recognized in specimens from Thailand but differences from Hawaiian and Japanese specimens were small. Overall, there were no differences in the 146 deduced amino acid residues. It is therefore concluded that C. maculipennis is a polyphagous species that can develop on plant hosts representing at least seven botanical families. This pest of Dendrobium flower buds in glasshouses is considered to have entered Hawaii, Florida and Japan from Southeast Asia, and was recently intercepted in the Netherlands. Infestations have established and spread in orchid glasshouses, causing concern about the possibility of more extensive damage to orchids and to crops, such as bitter gourd, grown in close proximity to orchid glasshouses in Japan. The potential usefulness of DNA analysis in determining host plant ranges of morphologically identical cecidomyiid species that are currently identified solely on differences of host plant is emphasized.  相似文献   
467.
468.
We investigated mechanisms for inducing focal adhesion kinase (FAK) tyrosine phosphorylation and their ability to trigger MAP kinase signaling using transmembrane chimeras that localize FAK and its mutants to the plasma membrane. We tested whether tyrosine phosphorylation was triggered by FAK transmembrane aggregation using antibodies against the chimeric extracellular domain. Experimental clustering of chimeras containing integrin beta cytoplasmic domains or FAK induced FAK tyrosine phosphorylation and trans-phosphorylation of endogenous FAK, as well as strong ERK activation. Next, we examined whether lower-order molecular proximity, namely dimerization, could regulate FAK tyrosine phosphorylation. We found that even relatively low-affinity FAK dimerization (K(d)=3.9 x 10(-5) M), in either of two different orientations, could induce FAK tyrosine phosphorylation. However, this cytoplasmic FAK dimerization could not induce MAP kinase activation or trans-phosphorylation of endogenous FAK. We conclude that dimerization of FAK is sufficient to induce its tyrosine phosphorylation, but that higher-order molecular proximity (clustering) at the cell membrane is apparently needed for additional biochemical events. This study identifies a proximity mechanism for regulating the initiation of FAK-mediated biochemical signaling.  相似文献   
469.
The possible role of abnormal T cell-dependent B-cell activation in Graves' disease was investigated by comparing lymphocyte subset distribution and the production of soluble CD8 (sCD8), sCD23, IL-10 and IL-12 by peripheral blood cells (PBMC) and thyroid-infiltrating lymphocytes (TL) in vitro. In TL, the percentage of CD8(+) cells was slightly higher and the sCD8 concentration was significantly higher than in PBMC. The ratio CD23(+) cells to CD20(+) cells (activated B/pan B cells) was increased in TL compared to PBMC from Graves' or normal controls, although the percentage of CD20(+) cells was decreased. Compared to PBMC in Graves' disease, the relative ratio of IL-10 to IL-12 release (IL-10/IL-12) by unstimulated TL was increased, despite a lack of significant difference between PBMC and TL in mean values for either IL-10 or IL-12 secretion. Incubating PBMC with a combination of anti-CD40 monoclonal antibodies and interleukin-4 (IL-4) resulted in B cell activation, reflected in an increase in the sCD23 level in both controls and Graves' patients, but especially prominent in the latter. Stimulation with anti-CD40 antibody and IL-4 also decreased the percentage of CD8(+) cells in PBMC but not TL from both Graves' disease and normal controls, and the percentage of CD8(+) cells in TL was higher than PBMC after the stimulation. The sCD23 concentration in TL was decreased compared to PBMC both in patients with Graves' disease and normal controls. However, in contrast to the increased responses observed in Graves' PBMC or normal controls after stimulation, sCD23 levels remained the same in stimulated TL from Graves' patients. This combination of B cell stimulants increased production of IL-10 in PBMC but not in TL obtained from patients with Graves' disease, and the increased IL-10/IL-12 ratio declined to a value no different from that in PBMC group after stimulation. Thus, T cell-dependent B-cell activation via a CD40 pathway may cause a shift in the Th(1)/Th(2) balance to Th(2) dominance in Graves' disease, while increased CD8(+) cells in TL may suppress sCD23 production and IL-10-producing Th(2) cells.  相似文献   
470.
Parkin, a product of the gene responsible for autosomal recessive juvenile parkinsonism (AR-JP), is an important player in the pathogenic process of Parkinson's disease (PD). Despite numerous studies including search for the substrate of parkin as an E3 ubiquitin-protein ligase, the mechanism by which loss-of-function of parkin induces selective dopaminergic neuronal death remains unclear. Related to this issue, here we show that antisense knockdown of parkin causes apoptotic cell death of human dopaminergic SH-SY5Y cells associated with caspase activation and accompanied by accumulation of oxidative dopamine (DA) metabolites due to auto-oxidation of DOPA and DA. Forced expression of alpha-synuclein (alpha-SN), another familial PD gene product, prevented accumulation of oxidative DOPA/DA metabolites and cell death caused by parkin loss. Our findings indicate that both parkin and alpha-SN share a common pathway in DA metabolism whose abnormality leads to accumulation of oxidative DA metabolites and subsequent cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号