首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   479篇
  免费   40篇
  2022年   4篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   12篇
  2015年   16篇
  2014年   13篇
  2013年   21篇
  2012年   37篇
  2011年   26篇
  2010年   21篇
  2009年   16篇
  2008年   14篇
  2007年   30篇
  2006年   23篇
  2005年   20篇
  2004年   13篇
  2003年   17篇
  2002年   7篇
  2001年   8篇
  2000年   9篇
  1999年   17篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   7篇
  1992年   3篇
  1991年   10篇
  1990年   10篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1979年   5篇
  1978年   6篇
  1977年   9篇
  1976年   3篇
  1975年   7篇
  1974年   9篇
  1973年   6篇
  1972年   12篇
  1971年   3篇
  1970年   5篇
  1969年   7篇
  1968年   5篇
  1967年   3篇
排序方式: 共有519条查询结果,搜索用时 15 毫秒
61.
62.
63.
Hepcidin-25, the bioactive form of hepcidin, is a key regulator of iron homeostasis as it induces internalization and degradation of ferroportin, a cellular iron exporter on enterocytes, macrophages and hepatocytes. Hepcidin levels are increased in chronic hemodialysis (HD) patients, but as of yet, limited information on factors associated with hepcidin-25 in these patients is available. In the current cross-sectional study, potential patient-, laboratory- and treatment-related determinants of serum hepcidin-20 and -25, were assessed in a large cohort of stable, prevalent HD patients. Baseline data from 405 patients (62% male; age 63.7 ± 13.9 [mean SD]) enrolled in the CONvective TRAnsport STudy (CONTRAST; NCT00205556) were studied. Predialysis hepcidin concentrations were measured centrally with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Patient-, laboratory- and treatment related characteristics were entered in a backward multivariable linear regression model. Hepcidin-25 levels were independently and positively associated with ferritin (p<0.001), hsCRP (p<0.001) and the presence of diabetes (p = 0.02) and inversely with the estimated glomerular filtration rate (p = 0.01), absolute reticulocyte count (p = 0.02) and soluble transferrin receptor (p<0.001). Men had lower hepcidin-25 levels as compared to women (p = 0.03). Hepcidin-25 was not associated with the maintenance dose of erythropoiesis stimulating agents (ESA) or iron therapy. In conclusion, in the currently studied cohort of chronic HD patients, hepcidin-25 was a marker for iron stores and erythropoiesis and was associated with inflammation. Furthermore, hepcidin-25 levels were influenced by residual kidney function. Hepcidin-25 did not reflect ESA or iron dose in chronic stable HD patients on maintenance therapy. These results suggest that hepcidin is involved in the pathophysiological pathway of renal anemia and iron availability in these patients, but challenges its function as a clinical parameter for ESA resistance.  相似文献   
64.
The yeast Saccharomyces cerevisiae is a tractable model organism in which both to explore the molecular mechanisms underlying the generation of disease-associated protein misfolding and to map the cellular responses to potentially toxic misfolded proteins. Specific targets have included proteins which in certain disease states form amyloids and lead to neurodegeneration. Such studies are greatly facilitated by the extensive ‘toolbox’ available to the yeast researcher that provides a range of cell engineering options. Consequently, a number of assays at the cell and molecular level have been set up to report on specific protein misfolding events associated with endogenous or heterologous proteins. One major target is the mammalian prion protein PrP because we know little about what specific sequence and/or structural feature(s) of PrP are important for its conversion to the infectious prion form, PrPSc. Here, using a study of the expression in yeast of fusion proteins comprising the yeast prion protein Sup35 fused to various regions of mouse PrP protein, we show how PrP sequences can direct the formation of non-transmissible amyloids and focus in particular on the role of the mouse octarepeat region. Through this study we illustrate the benefits and limitations of yeast-based models for protein misfolding disorders.  相似文献   
65.
66.
Drosophila melanogaster sarcomere length short (SALS) is a recently identified Wiskott-Aldrich syndrome protein homology 2 (WH2) domain protein involved in skeletal muscle thin filament regulation. SALS was shown to be important for the establishment of the proper length and organization of sarcomeric actin filaments. Here, we present the first detailed characterization of the biochemical activities of the tandem WH2 domains of SALS (SALS-WH2). Our results revealed that SALS-WH2 binds both monomeric and filamentous actin and shifts the monomer-filament equilibrium toward the monomeric actin. In addition, SALS-WH2 can bind to but fails to depolymerize phalloidin- or jasplakinolide-bound actin filaments. These interactions endow SALS-WH2 with the following two major activities in the regulation of actin dynamics: SALS-WH2 sequesters actin monomers into non-polymerizable complexes and enhances actin filament disassembly by severing, which is modulated by tropomyosin. We also show that profilin does not influence the activities of the WH2 domains of SALS in actin dynamics. In conclusion, the tandem WH2 domains of SALS are multifunctional regulators of actin dynamics. Our findings suggest that the activities of the WH2 domains do not reconstitute the presumed biological function of the full-length protein. Consequently, the interactions of the WH2 domains of SALS with actin must be tuned in the cellular context by other modules of the protein and/or sarcomeric components for its proper functioning.  相似文献   
67.
68.
Summary The fine structure and distribution of cholinesterase (ChE) activity in the ventral nerve cord of the earthworm (Lumbricus terrestris) was studied, using acetyl- and butyrylthiocholine iodides as substrates and iso-OMPA, 284C51 and eserine as inhibitors to discriminate between acetylcholinesterase (AChE) and other cholinesterase (ns.ChE) activities.The earthworm ventral nerve cord exhibits intense ChE activity. Both AChE and ns.ChE were present and they had identical distribution, being located mainly in the supportive glial cells. Most neurones of the ventral nerve cord contained no histochemically demonstrable activity. The ventral giant nerve cells were observed with the electron microscope to exhibit AChE activity. The enzyme was situated in the membranes of the rough-surfaced endoplasmic reticulum and in peculiar lamellated bodies but not in the membranes of the Golgi complex.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号