首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   17篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   4篇
  2019年   10篇
  2018年   6篇
  2017年   7篇
  2016年   12篇
  2015年   11篇
  2014年   17篇
  2013年   26篇
  2012年   31篇
  2011年   14篇
  2010年   19篇
  2009年   18篇
  2008年   21篇
  2007年   13篇
  2006年   16篇
  2005年   9篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1973年   2篇
  1970年   1篇
  1944年   1篇
  1934年   1篇
  1932年   1篇
排序方式: 共有327条查询结果,搜索用时 31 毫秒
121.
Tree species can affect the decomposition process through the quality of their leaf fall and through the species-specific conditions that they generate in their environment. We compared the relative importance of these effects in a 2-year experiment. Litterbags containing leaf litter of the winter-deciduous Quercus canariensis, the evergreen Q. suber and mixed litter were incubated beneath distinct plant covers. We measured litter carbon loss, 9 macro- and micronutrients and 18 soil chemical, physical and biological parameters of the incubation environment. Tree species affected decay dynamics through their litter quality and, to a lesser extent, through the induced environmental conditions. The deciduous litter showed a faster initial decomposition but left a larger fraction of slow decomposable biomass compared with the perennial litter; in contrast the deciduous environment impeded early decomposition while promoting further carbon loss in the latter decay stages. The interaction of these effects led to a negative litter–environment interaction contradicting the home-field advantage hypothesis. Leaf litter N, Ca and Mn as well as soil N, P and soil moisture were the best predictors for decomposition rates. Litter N and Ca exerted counteractive effects in early versus late decay stages; Mn was the best predictor for the decomposition limit value, that is, the fraction of slowly decomposable biomass at the later stage of decomposition; P and soil moisture showed a constant and positive relation with carbon loss. The deciduous oak litter had a higher initial nutrient content and released its nutrients faster and in a higher proportion than the perennial oak litter, significantly increasing soil fertility beneath its canopy. Our findings provide further insights into the factors that control the early and late stages of the decomposition process and reveal potential mechanisms underlying tree species influence on litter decay rate, carbon accumulation and nutrient cycling.  相似文献   
122.
This work characterizes MLS(b) resistance in 39 methicillin-resistant Staphylococcus aureus (MRSA) and 32 Staphylococcus epidermidis (MRSE) isolates. Of 21 erm(A) gene encoding MRSA isolates, 71.4% carried SCCmecIII, whereas of 12 isolates carrying the erm(C) gene, 83.3% carried SCCmecIV. Among the 25 MRSE isolates positive for the erm(C) gene, 80% had SCCmecIV or nontypeable cassettes. Isolates carrying these genes had MIC(90) ≥ 256 μg/mL to erythromycin and clindamycin. The msr(A) gene was associated with a low MIC(90) to these drugs. The erm(A) gene was associated with SCCmecIII in MRSA isolates, whereas the erm(C) gene was associated with SCCmecIV in both MRSA and MRSE isolates.  相似文献   
123.
Cell cycle dysregulation upon human cytomegalovirus (HCMV) infection of human fibroblasts is associated with the inactivation of the anaphase-promoting complex (APC), a multisubunit E3 ubiquitin ligase, and accumulation of its substrates. Here, we have further elucidated the mechanism(s) by which HCMV-induced inactivation of the APC occurs. Our results show that Cdh1 accumulates in a phosphorylated form that may prevent its association with and activation of the APC. The accumulation of Cdh1, but not its phosphorylation, appears to be cyclin-dependent kinase dependent. The lack of an association of exogenously added Cdh1 with the APC from infected cells indicates that the core APC also may be impaired. This is further supported by an examination of the localization and composition of the APC. Coimmunoprecipitation studies show that both Cdh1 and the subunit APC1 become dissociated from the complex. In addition, immunofluorescence analysis demonstrates that as the infection progresses, several subunits redistribute to the cytoplasm, while APC1 remains nuclear. Dissociation of the core complex itself would account for not only the observed inactivity but also its inability to bind to Cdh1. Taken together, these results illustrate that HCMV has adopted multiple mechanisms to inactivate the APC, which underscores its importance for a productive infection.  相似文献   
124.
We investigated the effect of oleanolic acid, a plant-derived triterpenoid, on insulin secretion and content in pancreatic beta-cells and rat islets. Oleanolic acid significantly enhanced insulin secretion at basal and stimulatory glucose concentrations in INS-1 832/13 cells and enhanced acute glucose-stimulated insulin secretion in isolated rat islets. In the cell line the effects of oleanolic acid on insulin secretion were comparable to that of the sulfonylurea tolbutamide at basal glucose levels and with the incretin mimetic Exendin-4 under glucose-stimulated conditions, yet neither Ca(2+) nor cAMP rose in response to oleanolic acid. Chronic treatment with oleanolic acid increased total cellular insulin protein and mRNA levels. These effects may contribute to the anti-diabetic properties of this natural product.  相似文献   
125.
Here, we investigated the physiological and structural leaf responses of seedlings of two evergreen and two deciduous Quercus species, grown in a glasshouse and subjected to contrasted conditions of light (low, medium and high irradiance) and water (continuous watering vs 2-months drought). The impact of drought on photosynthetic rate was strongest in high irradiance, while the impact of shade on photosynthetic rate was strongest with high water supply, contradicting the hypothesis of allocation trade-off. Multivariate causal models were evaluated using d-sep method. The model that best fitted the dataset proposed that the variation in specific leaf area affects photosynthetic rate and leaf nitrogen concentration, and this trait determines stomatal conductance, which also affects photosynthetic rate. Shade conditions seemed to ameliorate, or at least not aggravate, the drought impact on oak seedlings, therefore, the drought response on leaf performance depended on the light environment.  相似文献   
126.
First, the effect of different levels of nitrogen source on clavulanic acid (CA) production was evaluated in batch cultivations utilizing complex culture medium containing glycerol and three different levels of soy protein isolate (SPI). Cellular growth, evaluated in terms of the rheological parameter K, was highest with a SPI concentration of 30 g.L−1 (4.42 g.L−1 N total). However, the highest production of CA (380 mg.L−1) was obtained when an intermediate concentration of 20 g.L−1 of SPI (2.95 g.L−1 total N) was used. To address this, the influences of volumetric flow rate (F) and glycerol concentration in the complex feed medium (CsF) in fed-batch cultivations were investigated. The best experimental condition for CA production was F=0.01 L.h−1 and CsF=120 g.L−1, and under these conditions maximum CA production was practically twice that obtained in the batch cultivation. A single empirical equation was proposed to relate maximum CA production with F and CsF in fed-batch experiments.  相似文献   
127.
Field experiments reporting the relative growth rate (RGR) patterns in plants are scarce. In this study, 22 herbaceous species (20 Aegilops species, Amblyopyrum muticum and Triticum aestivum) were grown under field conditions to assess their RGR, and to find out if the differences in RGR amongst species were explained by morphological or physiological traits. Plants were cultivated during two months, and five harvests (every 13–19 days) were carried out. Factors explaining between-species differences in RGR varied, depending on whether short (13–19 days) or longer periods (62 days) were considered. RGR for short periods (4 growth periods of 13–19 days each) showed a positive correlation with net assimilation rate (NAR), but there was no significant correlation with leaf area ratio (LAR) (with the exception of the first growth period). In contrast, when growth was investigated over two months, RGR was positively correlated with morphological traits (LAR, and specific leaf area, SLA), but not with physiological traits (NAR). A possible explanation for these contrasting results is that during short growth periods, NAR exhibited strong variations possibly caused by the variable field conditions, and, consequently NAR mainly determined RGR. In contrast, during a longer growth period (62 days) the importance of NAR was not apparent (there was no significant correlation between RGR and NAR), while allocation traits, such as LAR and SLA, became most relevant.  相似文献   
128.
Human Papillomavirus (HPV) is the causal agent of cervical cancer, one of the most common causes of death for women. The major capsid L1 protein self-assembles in Virus Like Particles (VLPs), which are highly immunogenic and suitable for vaccine production. In this study, a plastid transformation approach was assessed in order to produce a plant-based HPV-16 L1 vaccine. Transplastomic plants were obtained after transformation with vectors carrying a chimeric gene encoding the L1 protein either as the native viral (L1v gene) or a synthetic sequence optimized for expression in plant plastids (L1pt gene) under control of plastid expression signals. The L1 mRNA was detected in plastids and the L1 antigen accumulated up to 1.5% total leaf proteins only when vectors included the 5′-UTR and a short N-terminal coding segment (Downstream Box) of a plastid gene. The half-life of the engineered L1 protein, determined by pulse-chase experiments, is at least 8 h. Formation of immunogenic VLPs in chloroplasts was confirmed by capture ELISA assay using antibodies recognizing conformational epitopes and by electron microscopy. Contribution No. 129 from CNR-IGV, Portici.  相似文献   
129.
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthase, has been proposed to be a mediator of vascular dysfunction during hyperhomocysteinemia. Levels of ADMA are regulated by dimethylarginine dimethylaminohydrolase (DDAH). Using both in vitro and in vivo approaches, we tested the hypothesis that hyperhomocysteinemia causes downregulation of the two genes encoding DDAH (Ddah1 and Ddah2). In the MS-1 murine endothelial cell line, the addition of homocysteine decreased NO production but did not elevate ADMA or alter levels of Ddah1 or Ddah2 mRNA. Mice heterozygous for cystathionine beta-synthase (Cbs) and their wild-type littermates were fed either a control diet or a high-methionine/low-folate (HM/LF) diet to produce varying degrees of hyperhomocysteinemia. Maximal relaxation of the carotid artery to the endothelium-dependent dilator acetylcholine was decreased by approximately 50% in Cbs(+/-) mice fed the HM/LF diet compared with Cbs(+/+) mice fed the control diet (P < 0.001). Compared with control mice, hyperhomocysteinemic mice had lower levels of Ddah1 mRNA in the liver (P < 0.001) and lower levels of Ddah2 mRNA in the liver, lung, and kidney (P < 0.05). Downregulation of DDAH expression in hyperhomocysteinemic mice did not result in an increase in plasma ADMA, possibly due to a large decrease in hepatic methylation capacity (S-adenosylmethionine-to-S-adenosylhomocysteine ratio). Our findings demonstrate that hyperhomocysteinemia causes tissue-specific decreases in DDAH expression without altering plasma ADMA levels in mice with endothelial dysfunction.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号