首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   32篇
  国内免费   1篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   16篇
  2017年   8篇
  2016年   6篇
  2015年   13篇
  2014年   14篇
  2013年   13篇
  2012年   39篇
  2011年   28篇
  2010年   16篇
  2009年   8篇
  2008年   25篇
  2007年   24篇
  2006年   21篇
  2005年   16篇
  2004年   17篇
  2003年   17篇
  2002年   20篇
  2001年   20篇
  2000年   6篇
  1999年   17篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1995年   9篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   7篇
  1982年   2篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1975年   2篇
  1970年   4篇
  1967年   1篇
  1966年   2篇
  1965年   2篇
  1916年   1篇
排序方式: 共有482条查询结果,搜索用时 203 毫秒
61.
Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus.  相似文献   
62.
UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltrans- ferases (ppGalNAc Ts) comprise a large family of glycosyltransferases that initiate mucin-type protein O-glycosylation, transferring alpha-GalNAc to Thr and Ser residues of polypeptide acceptors. Families of ppGalNAc Ts are found across diverse eukaryotes with orthologs identifiable from mammals to single-cell organisms. The peptide substrate specificity and specific protein targets of the individual ppGalNAc T family members remain poorly understood. Previously, we reported a series of oriented random peptide substrate libraries for quantitatively determining the peptide substrate specificities of the mammalian ppGalNAc T1 and T2 (Gerken TA, Raman J, Fritz TA, Jamison O. 2006. Identification of common and unique peptide substrate preferences for the UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases T1 & T2 (ppGalNAc T1 & T2) derived from oriented random peptide substrates. J Biol Chem. 281:32403-32416). With these substrates, previously unknown features of the transferases were revealed. Utilizing these and a new lengthened set of random peptides, studies have now been performed on PGANT5 and PGANT2, the Drosophila orthologs of T1 and T2. The results from these studies suggest that the major peptide substrate determinants for these transferases are contained within 2 to 3 residues flanking the site of glycosylation. It is further found that the mammalian and fly T1 orthologs display very similar peptide substrate preferences, while the T2 orthologs are nearly indistinguishable, suggesting similar peptide preferences amongst orthologous pairs have been maintained across evolution. This conclusion is further supported by sequence homology comparisons of each of the transferase orthologs, showing that the peptide substrate and UDP binding site residues are more highly conserved between species relative to their remaining catalytic and lectin domain residues.  相似文献   
63.
64.
Patterns of variation in nuclear DNA content and chromosome number were analysed in a temporal sequence, during in vitro growth of calli and cell suspensions in two monohaploids, a dihaploid and a tetraploid of potato (Solanum tuberosum). The results showed that both polyploidization and aneuploidy occurred during the initial stages of callus induction in all the genotypes. With further growth of callus, the frequency and extent of polyploidy and aneuploidy increased. In addition, the patterns of DNA and chromosome variation in cell suspension cultures revealed continued mitotic activity and transmission of cells with higher ploidy levels and aneuploidy. The results suggest that endoreduplication as well as endomitosis are important mechanisms of polyploidization, and that chromosome lagging and non-disjunction contribute to the production of aneuploidy.The various genotypes cultured under the same in vitro growth conditions differed in genetic instability, as assessed from the rate and degree of polyploidization and aneuploidy. Monohaploids showed more rapid rate of polyploidization than the dihaploid and tetraploid potatoes. It was concluded that the differences in genetic stability were due to different ploidy levels and genetic make-up of the genotypes.  相似文献   
65.
In this paper, a straightforward and generic protocol is presented to label the C-terminus of a peptide with any desired moiety that is functionalized with a primary amine. Amine-functional molecules included are polymers (useful for hybrid polymers), long alkyl chains (used in peptide amphiphiles and stabilization of peptides), propargyl amine and azido propyl-amine (desirable for 'click' chemistry), dansyl amine (fluorescent labeling of peptides) and crown ethers (peptide switches/hybrids). In the first part of the procedure, the primary amine is attached to an aldehyde-functional resin via reductive amination. To the secondary amine that is produced, an amino acid sequence is coupled via a standard solid-phase peptide synthesis protocol. Since one procedure can be applied for any given amine-functional moiety, a robust method for C-terminal peptide labeling is obtained.  相似文献   
66.
67.
A bacterial isolate was recovered from a soil sample collected in Jeollabuk-do Province, South Korea, and subjected to polyphasic taxonomic assessment. Cells of the isolate, designated strain S1-2-1-2-1T, were observed to be rod-shaped, pink in color, and Gram-stain negative. The strain was able to grow at temperature range from 10 to 30 °C, with an optimum of 25 °C, and growth occurred at pH 6–8. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-1-2-1T belongs to the genus Hymenobacter, with closely related type strains being Hymenobacter daeguensis 16F3Y-2T (95.8% similarity), Hymenobacter rubidus DG7BT (95.8%), Hymenobacter soli PBT (95.7%), Hymenobacter terrenus MIMtkLc17T (95.6%), Hymenobacter terrae DG7AT (95.3%), and Hymenobacter saemangeumensis GSR0100T (95.2%). The genomic DNA G+C content of strain S1-2-1-2-1T was 63.0 mol%. The main polar lipid of this strain was phosphatidylethanolamine, the predominant respiratory quinone was menaquinone-7, and the major fatty acids were C15:0 iso (27.3%), summed feature 3 (C16:1 ω7c/C16:1 ω6c) (16.5%), C15:0 anteiso (15.3%), and C16:0 (14.7%), supporting the affiliation of this strain with the genus Hymenobacter. The results of this polyphasic analysis allowed for the genotypic and phenotypic differentiation of strain S1-2-1-2-1T from recognized Hymenobacter species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S1-2-1-2-1T is considered to represent a novel species of the genus Hymenobacter, for which the name Hymenobacter agri sp. nov. is proposed. The type strain is S1-2-1-2-1T (=KCTC 52739T?=?JCM 32194T).  相似文献   
68.
The swamp type of the Asian water buffalo is assumed to have been domesticated by about 4000 years BP, following the introduction of rice cultivation. Previous localizations of the domestication site were based on mitochondrial DNA (mtDNA) variation within China, accounting only for the maternal lineage. We carried out a comprehensive sampling of China, Taiwan, Vietnam, Laos, Thailand, Nepal and Bangladesh and sequenced the mtDNA Cytochrome b gene and control region and the Y‐chromosomal ZFY, SRY and DBY sequences. Swamp buffalo has a higher diversity of both maternal and paternal lineages than river buffalo, with also a remarkable contrast between a weak phylogeographic structure of river buffalo and a strong geographic differentiation of swamp buffalo. The highest diversity of the swamp buffalo maternal lineages was found in south China and north Indochina on both banks of the Mekong River, while the highest diversity in paternal lineages was in the China/Indochina border region. We propose that domestication in this region was later followed by introgressive capture of wild cows west of the Mekong. Migration to the north followed the Yangtze valley as well as a more eastern route, but also involved translocations of both cows and bulls over large distances with a minor influence of river buffaloes in recent decades. Bayesian analyses of various migration models also supported domestication in the China/Indochina border region. Coalescence analysis yielded consistent estimates for the expansion of the major swamp buffalo haplogroups with a credibility interval of 900 to 3900 years BP. The spatial differentiation of mtDNA and Y‐chromosomal haplotype distributions indicates a lack of gene flow between established populations that is unprecedented in livestock.  相似文献   
69.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nef can, to a large extent, functionally replace SIVmac nef in vivo.  相似文献   
70.
Mint3 is known to enhance aerobic ATP production, known as the Warburg effect, by binding to FIH-1. Since this effect is considered to be beneficial for cancer cells, the interaction is a promising target for cancer therapy. However, previous research has suggested that the interacting region of Mint3 with FIH-1 is intrinsically disordered, which makes investigation of this interaction challenging. Therefore, we adopted thermodynamic and structural studies in solution to clarify the structural and thermodynamical changes of Mint3 binding to FIH-1. First, using a combination of circular dichroism, nuclear magnetic resonance, and hydrogen/deuterium exchange–mass spectrometry (HDX-MS), we confirmed that the N-terminal half, which is the interacting part of Mint3, is mostly disordered. Next, we revealed a large enthalpy and entropy change in the interaction of Mint3 using isothermal titration calorimetry (ITC). The profile is consistent with the model that the flexibility of disordered Mint3 is drastically reduced upon binding to FIH-1. Moreover, we performed a series of ITC experiments with several types of truncated Mint3s, an effective approach since the interacting part of Mint3 is disordered, and identified amino acids 78 to 88 as a novel core site for binding to FIH-1. The truncation study of Mint3 also revealed the thermodynamic contribution of each part of Mint3 to the interaction with FIH-1, where the core sites contribute to the affinity (ΔG), while other sites only affect enthalpy (ΔH), by forming noncovalent bonds. This insight can serve as a foothold for further investigation of intrinsically disordered regions (IDRs) and drug development for cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号