首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   4篇
  国内免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   14篇
  2020年   9篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   7篇
  2015年   15篇
  2014年   13篇
  2013年   21篇
  2012年   20篇
  2011年   26篇
  2010年   9篇
  2009年   10篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   9篇
  2003年   10篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有243条查询结果,搜索用时 609 毫秒
151.
The photosynthetic performance of mangrove Rhizophora mucronata seedlings grown under seasonally full light (HL), 50 % shade (ML), and 80 % shade (LL) conditions was characterized by gas exchange, and chlorophyll fluorescence. The carboxylation efficiency significantly affected the seasonal change of the photosynthetic capacity. Temperature and light might have synergic effect on the carboxylation efficiency. The photosynthetic rate (PN) of R. mucronata seedlings under shade regimes, however, could not be attributed to variability in chlorophyll, C i , ΦPSII, ETR or qP values but more to differences in carboxylation efficiency, g max, and E max. HL and ML plants had higher PN, g s and E than the LL ones. Nevertheless, LL leaves exhibited low photoinhibition susceptibility. The high non-photochemical quenching in HL leaves may show that applied light intensity probably exceeded the photosynthetic capability. The findings indicate that ML treatments provided the best condition to obtain such carbon fixation capacity.  相似文献   
152.
High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.  相似文献   
153.
Pakistan is bestowed by a diversified array of wild bird species including collared doves of which the taxonomy has been least studied and reported. DNA barcoding is a geno-taxonomic tool that has been used for characterization of bird species using mitochondrial cytochrome c oxidase I gene (COI). This study aimed to identify taxonomic order of Pakistani collared dove using DNA barcoding. Purposely herein, we present a phylogenetic analysis of Pakistani collared dove based on 650 base pairs of COI gene sequences. Analysis of phylogenetic tree revealed that Pakistani collared dove shared a common clade with Eurasian collared dove (Streptopelia decaocto) and African collared dove (Streptopelia roseogrisea) which indicated a super-species group in Streptopelia genus. This is the first report of molecular classification of Pakistani collared dove using DNA barcoding.  相似文献   
154.
This work presents the comparative study on the dyeing behavior of cellulose fibers in alkaline solutions and under the influence of UV radiation. The cellulosic fabrics were pretreated followed by conventional mercerization technique or treatment with UV irradiation. For different time duration the reorganization of cellulose fibers by swelling treatments in alkaline solutions results in numerous structural modifications, causing changes of their accessibility and/or reactivity. The results revealed that the swelling of the cellulosic fibers depends on type of pre-treatment, dose of the radiation and the concentration of alkaline solution used. SEM analysis confirmed that UV irradiation of the cellulosic fibers leads to a higher swelling in comparison with any concentration of NaOH treatment. In comparison of both the treatments, the mercerized cellulosic fibers have shown better tear and tensile strength as compared to the untreated and UV irradiated one. There is adverse effect of UV radiation on the mechanical properties of UV radiation. Moreover, no loss in weight was observed after exposing the cellulose fabrics surface to UV radiation.  相似文献   
155.
Nonalcoholic fatty liver disease (NAFLD) is associated with obesity and insulin resistance. It is also a predisposing factor for type 2 diabetes. Dietary factors are believed to contribute to all three diseases. NAFLD is characterized by increased intrahepatic fat and mitochondrial dysfunction, and its etiology may be attributed to excessive fructose intake. Consumption of high fructose corn syrup‐55 (HFCS‐55) stands at up to 15% of the average total daily energy intake in the United States, and is linked to weight gain and obesity. The aim of this study was to establish whether HFCS‐55 could contribute to the pathogenesis of NAFLD, by examining the effects of HFCS‐55 on hepatocyte lipogenesis, insulin signaling, and cellular function, in vitro and in vivo. Exposure of hepatocytes to HFCS‐55 caused a significant increase in hepatocellular triglyceride (TG) and lipogenic proteins. Basal production of reactive oxygen metabolite (ROM) was increased, together with a decreased capacity to respond to an oxidative challenge. HFCS‐55 induced a downregulation of the insulin signaling pathway, as indicated by attenuated ser473phosphorylation of AKT1. The c‐Jun amino‐terminal kinase (JNK), which is intimately linked to insulin resistance, was also activated; and this was accompanied by an increase in endoplasmic reticulum (ER) stress and intracellular free calcium perturbation. Hepatocytes exposed to HFCS‐55 exhibited mitochondrial dysfunction and released cytochrome C (CytC) into the cytosol. Hepatic steatosis and mitochondrial disruption was induced in vivo by a diet enriched with 20% HFCS 55; accompanied by hypoadiponectinemia and elevated fasting serum insulin and retinol‐binding protein‐4 (RBP4) levels. Taken together our findings indicate a potential mechanism by which HFCS‐55 may contribute to the pathogenesis of NAFLD.  相似文献   
156.
Biodegradable polyurethane elastomers with tunable hydrophobicity were synthesized by step-growth polymerization techniques using poly(?-caprolactone) (PCL) and 4,4′-diphenylmethane diisocyanate (MDI). The prepolymer was extended with different mass ratios of chitin and 1,4-butane diol (BDO). The effect of chitin contents in chain extenders (CE) proportion on surface properties was studied and investigated. Incorporation of chitin contents into the final PU showed decrease in surface free energy and its polar component. Simultaneously, the work of water adhesion to polymer decreases significantly by increasing the chitin contents in the synthesized polymer. Contact angle measurement, water absorption and swelling behavior of the synthesized polyurethane samples were affected by varying the chitin contents in the chemical composition of the final PU. The interactions of the final PU films with solvents on the surface were displayed clear dependent on the contents of chitin in to the final polyurethane formulation. The results of different tests demonstrated that the synthesized products are a potential candidate as non-absorbable suture as previously investigated into their in vitro biocompatibility and non-toxicity [K.M. Zia, M. Zuber, I.A. Bhatti, M. Barikani, M.A. Sheikh, Int. J. Biol. Macromol. 44 (2009) 18–22].  相似文献   
157.
The light-harvesting antenna of higher plant photosystem II (LHCII) has the intrinsic capacity to dissipate excess light energy as heat in a process termed nonphotochemical quenching (NPQ). Recent studies suggest that zeaxanthin and lutein both contribute to the rapidly relaxing component of NPQ, qE, possibly acting in the minor monomeric antenna complexes and the major trimeric LHCII, respectively. To distinguish whether zeaxanthin and lutein act independently as quenchers at separate sites, or alternatively whether zeaxanthin fulfills an allosteric role regulating lutein-mediated quenching, the kinetics of qE and the qE-related conformational changes (ΔA535) were compared in Arabidopsis (Arabidopsis thaliana) mutant/antisense plants with altered contents of minor antenna (kolhcb6, aslhcb4), trimeric LHCII (aslhcb2), lutein (lut2, lut2npq1, lut2npq2), and zeaxanthin (npq1, npq2). The kinetics of the two components of NPQ induction arising from zeaxanthin-independent and zeaxanthin-dependent qE were both sensitive to changes in the protein composition of the photosystem II antenna. The replacement of lutein by zeaxanthin or violaxanthin in the internal Lhcb protein-binding sites affected the kinetics and relative amplitude of each component as well as the absolute chlorophyll fluorescence lifetime. Both components of qE were characterized by a conformational change leading to nearly identical absorption changes in the Soret region that indicated the involvement of the LHCII lutein 1 domain. Based on these observations, we suggest that both components of qE arise from a common quenching mechanism based upon a conformational change within the photosystem II antenna, optimized by Lhcb subunit-subunit interactions and tuned by the synergistic effects of external and internally bound xanthophylls.The chlorophyll a/b-binding light-harvesting antenna of photosystem II (PSII of higher plants is responsible for the efficient collection and transfer of excitation energy to the reaction center. The PSII antenna comprises the main trimeric light-harvesting complex, LHCII, which is composed of the Lhcb1 to -3 polypeptides, and the minor light-harvesting complexes, CP29, CP26, and CP24, composed of Lhcb4, -5, and -6, respectively. In Arabidopsis (Arabidopsis thaliana), four LHCII trimers associate with two copies each of CP24, CP26, and CP29 and a core dimer of PSII (CP43/D1/D2/CP47) to form the C2S2M2 LHCII-PSII supercomplex (Dekker and Boekema, 2005). In addition, depending upon the growth conditions, two or three extra LHCII trimers per PSII may be present in LHCII-only regions of the grana, providing additional light-harvesting capacity.The PSII antenna is a highly dynamic system that is able to tune the amount of excitation delivered to the PSII reaction center to match physiological need (Horton et al., 1996). The regulation of energy flow occurs by control of the thermal dissipation of excess excitation within the PSII antenna, a process termed nonphotochemical quenching (NPQ). NPQ is heterogeneous, comprising a slowly reversible qI component and a rapidly reversible qE component (Horton et al., 1996). The trigger for qE is the buildup of the transmembrane proton gradient or ΔpH (Briantais et al., 1979). The ΔpH is sensed by the PsbS protein (Li et al., 2004), without which the rapidly reversible behavior of NPQ is lost (Li et al., 2000). Full expression of qE in vivo is associated with the enzymatic deepoxidation of the epoxy-xanthophyll violaxanthin to zeaxanthin, via the action of the xanthophyll cycle (Demmig-Adams, 1990). The majority of the photoconvertible xanthophyll cycle pool is associated with trimeric LHCII, bound at the external V1 binding site (Ruban et al., 1999, 2002a; Caffarri et al., 2001; Liu et al., 2004). Trimeric LHCII binds two other types of xanthophylls internally: two all-trans-luteins at the L1 and L2 sites associated with the central membrane-spanning α-helices; and a 9-cis-neoxanthin at the N1 site associated with the C-helix chlorophyll b domain (Liu et al., 2004). The minor monomeric complexes CP24, CP26, and CP29 all bind lutein at the L1 site. In addition, CP29 binds two xanthophyll cycle carotenoids and one-half to one neoxanthin, CP24 binds two xanthophyll cycle carotenoids, while CP26 binds one xanthophyll cycle carotenoid and one neoxanthin (Peter and Thornber, 1991; Bassi et al., 1993; Ruban et al., 1994, 1999; Morosinotto et al., 2002).Although there is strong evidence that qE occurs in the PSII antenna light-harvesting proteins and that xanthophylls are involved, the mechanism of energy dissipation remains unclear. There is evidence for two distinct quenching mechanisms, one involving zeaxanthin (type I) and the other lutein (type II). In the type I mechanism, it is proposed that qE obligatorily depends upon zeaxanthin acting as a quencher of excited chlorophyll via the formation of a charge transfer state. Evidence for type I is the formation of a carotenoid radical cation absorbing at approximately 1,000 nm that correlates with the extent of qE (Holt et al., 2005). Recently, evidence was obtained that formation of the zeaxanthin radical cation occurs exclusively at the L2 binding site of the minor antenna complexes (Ahn et al., 2008; Avenson et al., 2008), quenching therefore requiring reversible insertion of zeaxanthin into this internal site. Because the effect of this cation on the excited-state lifetime of the minor antenna complexes was found to be very small, it was suggested that in vivo, under the influence of the ΔpH, a large population of complexes would adopt a conformation in which this species could form (Avenson et al., 2008). Evidence was also obtained that a zeaxanthin radical cation may form in trimeric LHCII (Amarie et al., 2007). Again, the effect on the chlorophyll excited-state lifetime was very small, leading these authors to conclude that the type I mechanism could not be responsible for qE (Amarie et al., 2007; Dreuw and Wormit, 2008).In the type II mechanism, qE is an inbuilt property of LHCII proteins; a protein conformational change alters the configuration of bound pigments and results in the xanthophyll bound at the L1 site (normally lutein) becoming an effective quencher of chlorophyll excited states (Ruban et al., 2007; Ilioaia et al., 2008). Evidence for a type II mechanism came from studies of trimeric LHCII aggregates (Ruban et al., 2007). Here, it was concluded that energy dissipation occurs by energy transfer from chlorophyll a to the S1 state (2Ag1) of lutein bound at the L1 site. Notably, this quenching mechanism decreases the chlorophyll excited-state lifetime by a magnitude sufficient to fully account for qE in vivo. A change in the conformation of another LHCII-bound xanthophyll (neoxanthin) correlates with the extent of quenching. This conformational change takes place in vivo with an amplitude that correlates with the amount of qE. In the model for type II quenching proposed by Horton and coworkers (1991, 2005), zeaxanthin acts not as a quencher but as an allosteric modulator of the ΔpH sensitivity of this intrinsic LHCII quenching process.Although the type I and type II mechanisms involve different xanthophylls operating at different sites, there are similarities: in particular, both are proposed to involve a ΔpH-triggered, PsbS-mediated conformational change (Ruban et al., 2007; Ahn et al., 2008). Indeed, it is possible that both mechanisms contribute to in vivo qE, since the process occurs in both the presence and absence of zeaxanthin (Adams et al., 1990; Crouchman et al., 2006). The crucial question is whether zeaxanthin-dependent and zeaxanthin-independent qE arise from the same mechanism (type II) or from two different ones (types I and II, respectively). The kinetics of NPQ formation upon the illumination of dark-adapted leaves comprise two components: the first forms rapidly and is zeaxanthin independent; the second, slower component correlates with violaxanthin deepoxidation and therefore is described as zeaxanthin dependent (Adams et al., 1990; Ruban and Horton, 1999). The two components of NPQ formation are of the qE type: both relax rapidly upon darkening (Adams et al., 1990); both are dependent upon PsbS (Li et al., 2000); and both are enhanced by PsbS overexpression (Li et al., 2002; Crouchman et al., 2006). Investigation of these kinetics provides an opportunity to determine whether a single mechanism can account for qE and to give clues to which type of mechanism is involved. Here, we test the hypothesis that the two components arise from different mechanisms: the zeaxanthin-dependent component arising in the minor monomeric antenna by a type I mechanism (Gilmore et al., 1998; Ahn et al., 2008; Avenson et al., 2008), and the zeaxanthin-independent component arising in the major trimeric LHCII by the type II mechanism. An alternative explanation for zeaxanthin-independent qE, at least under low-light conditions, when qE forms transiently, is that it is caused by quenching in the PSII reaction center (Finazzi et al., 2004). Several predictions emerge from this hypothesis. First, the removal of certain Lhcb proteins by mutation would differentially affect the two components of qE. Second, because the two components would be additive and could not compensate for the loss of one another (Niyogi et al., 1998; Pogson et al., 1998), they should each contribute a discrete component to the kinetics of qE formation and relaxation. Third, in mutants lacking lutein, the capacity of the type II mechanism would be reduced, while the zeaxanthin-dependent component would be unaffected. Finally, the two components may be expected to be characterized by different absorption changes in the Soret region, which reflect changes in the absorption spectra of bound pigments brought about by conformational changes within the PSII antenna upon qE formation (Ruban et al., 1993a, 1993b, 2002b; Bilger and Björkman, 1994). We tested this hypothesis by analysis of qE kinetics, fluorescence lifetimes, and qE-related absorption difference spectra. Contrary to the above predictions, the data indicated that both steady-state and transient qE arise from a common mechanism within the PSII antenna, in both the presence and absence of zeaxanthin.  相似文献   
158.

Background

A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems.

Methodology/Principal Findings

We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo''s response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time.

Conclusions/Significance

Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and utilized for therapeutic purposes.  相似文献   
159.

Volume Contents

Contents Volume 152  相似文献   
160.
Regulator of G protein signaling (RGS) proteins function as GTPase accelerating proteins (GAP) for Galpha subunits, attenuating G-protein-coupled receptor signal transduction. The present study tested the ability of members of different subfamilies of RGS proteins to modulate both G-protein-dependent and -independent signaling in mammalian cells. RGS4, RGS10, and RGSZ1 significantly attenuated Galphai-mediated signaling by 5-HT1A, but not by dopamine D2, receptor-expressing cells. Additionally, RGS4 and RGS10 significantly inhibited forskolin-stimulated cAMP production in both cell lines. In contrast, RGS2, RGS7, and RGSZ1 had no effect on forskolin-stimulated cAMP production in these cells. RGS2 and RGS7 significantly decreased Galphaq-mediated signaling by 5-HT2A receptors, confirming that the RGS4 and RGS10 effects on forskolin-stimulated cAMP production were specific, and not simply due to overexpression. Interestingly, similar expression levels of RGS4 protein resulted in greater inhibition of G-protein-independent cAMP production compared to G-protein-dependent GAP activity. Our results suggest specificity and selectivity of RGS proteins on G-protein-dependent and -independent signaling in mammalian cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号