首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   48篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   10篇
  2015年   11篇
  2014年   19篇
  2013年   10篇
  2012年   21篇
  2011年   19篇
  2010年   15篇
  2009年   14篇
  2008年   17篇
  2007年   22篇
  2006年   20篇
  2005年   17篇
  2004年   18篇
  2003年   9篇
  2002年   19篇
  2001年   10篇
  2000年   19篇
  1999年   14篇
  1998年   13篇
  1997年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   6篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1976年   5篇
  1975年   9篇
  1973年   4篇
  1971年   4篇
  1970年   3篇
  1968年   3篇
  1951年   2篇
  1949年   2篇
  1935年   2篇
  1930年   3篇
  1907年   2篇
排序方式: 共有472条查询结果,搜索用时 15 毫秒
41.
Patients with systemic autoimmune diseases usually produce high levels of antibodies to self-antigens (autoantigens). The repertoire of common autoantigens is remarkably limited, yet no readily understandable shared thread links these apparently diverse proteins. Using computer prediction algorithms, we have found that most nuclear systemic autoantigens are predicted to contain long regions of extreme structural disorder. Such disordered regions would generally make poor B cell epitopes and are predicted to be under-represented as potential T cell epitopes. Consideration of the potential role of protein disorder may give novel insights into the possible role of molecular mimicry in the pathogenesis of autoimmunity. The recognition of extreme autoantigen protein disorder has led us to an explicit model of epitope spreading that explains many of the paradoxical aspects of autoimmunity – in particular, the difficulty in identifying autoantigen-specific helper T cells that might collaborate with the B cells activated in systemic autoimmunity. The model also explains the experimentally observed breakdown of major histocompatibility complex (MHC) class specificity in peptides associated with the MHC II proteins of activated autoimmune B cells, and sheds light on the selection of particular T cell epitopes in autoimmunity. Finally, the model helps to rationalize the relative rarity of clinically significant autoimmunity despite the prevalence of low specificity/low avidity autoantibodies in normal individuals.  相似文献   
42.
Leaf extracts of T. sessilifolius growing on five different host plants (Psidium guajava, Citrus lemon, Vernonia amygdalina, Persea americana and Jatropa curcas) were evaluated for antimicrobial activity of the plant. Powdered leaves of T. sessilifolius collected from each host plant was divided into two portions. One portion was used for aqueous infusion and the other portion was successively extracted with hexane, ethylacetate and methanol. Infusion of aqueous extract of powdered leaves did not show antimicrobial effect even at the concentration of 1000 and 2000 microg/ml on test microorganisms (Staph. aureus, E. coli, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans). However in broth culture, methanolic and hexane extract had MIC range of 62.5-500 microg/ml and ethylacetate extract had 250-500 microg/ml. Phytochemical screening of leaf samples of T. sessilifolius collected from different host plants showed positive test for hydrolysable tannins, saponins, flavonoids, terpenes, cardiac glycoside, reducing sugars and proteins. LD50 concentration was found to be > 1.500 mg/kg for samples from P. guajava; 489.89 mg/kg for J. curcas and C. lemon; and 692 mg/kg for V. amydalina in mice.  相似文献   
43.
44.
Transient neonatal diabetes mellitus (TNDM) is characterised by intra-uterine growth retardation, while Beckwith–Wiedemann syndrome (BWS) is a clinically heterogeneous overgrowth syndrome. Both TNDM and BWS may be caused by aberrant loss of methylation (LOM) at imprinted loci on chromosomes 6q24 and 11p15.5 respectively. Here we describe two patients with a clinical diagnosis of TNDM caused by LOM at the maternally methylated imprinted domain on 6q24; in addition, these patients had LOM at the centromeric differentially methylated region of 11p15.5. This shows that imprinting anomalies can affect more than one imprinted locus and may alter the clinical presentation of imprinted disease.  相似文献   
45.
46.
Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these.  相似文献   
47.
The archaeal origins of the eukaryotic translational system   总被引:1,自引:0,他引:1  
Among the 78 eukaryotic ribosomal proteins, eleven are specific to Eukarya, 33 are common only to Archaea and Eukarya and 34 are homologous (at least in part) to those of both Bacteria and Archaea. Several other translational proteins are common only to Eukarya and Archaea (e.g., IF2a, SRP19, etc.), whereas others are shared by the three phyla (e.g., EFTu/EF1A and SRP54). Although this and other analyses strongly support an archaeal origin for a substantial fraction of the eukaryotic translational machinery, especially the ribosomal proteins, there have been numerous unique and ubiquitous additions to the eukaryotic translational system besides the 11 unique eukaryotic ribosomal proteins. These include peptide additions to most of the 67 archaeal homolog proteins, rRNA insertions, the 5.8S RNA and the Alu extension to the SRP RNA. Our comparative analysis of these and other eukaryotic features among the three different cellular phylodomains supports the idea that an archaeal translational system was most likely incorporated by means of endosymbiosis into a host cell that was neither bacterial nor archaeal in any modern sense. Phylogenetic analyses provide support for the timing of this acquisition coinciding with an ancient bottleneck in prokaryotic diversity.  相似文献   
48.
The cornea is the first optical element in the path of light entering the eye, playing a role in image formation and protection. Corneas of vertebrate simple camera-type eyes possess microprojections on the outer surface in the form of microridges, microvilli, and microplicae. Corneas of invertebrates, which have simple or compound eyes, or both, may be featureless or may possess microprojections in the form of nipples. It was previously unknown whether cephalopods (invertebrates with camera-type eyes like vertebrates) possess corneal microprojections and, if so, of what form. Using scanning electron microscopy, we examined corneas of a range of cephalopods and discovered nipple-like microprojections in all species. In some species, nipples were like those described on arthropod compound eyes, with a regular hexagonal arrangement and sizes ranging from 75 to 103?nm in diameter. In others, nipples were nodule shaped and irregularly distributed. Although terrestrial invertebrate nipples create an antireflective surface that may play a role in camouflage, no such optical function can be assigned to cephalopod nipples due to refractive index similarities of corneas and water. Their function may be to increase surface-area-to-volume ratio of corneal epithelial cells to increase nutrient, gas, and metabolite exchange, and/or stabilize the corneal mucous layer, as proposed for corneal microprojections of vertebrates.  相似文献   
49.
A series of α7 nicotinic acetylcholine receptor full-agonists with a 1,3,4-oxadiazol-2-amine core has been discovered. Systematic exploration of the structure-activity relationships for both α7 potency and selectivity with respect to interaction with the hERG channel are described. Further profiling led to the identification of compound 22, a potent full agonist showing efficacy in the novel object recognition model of cognition enhancement.  相似文献   
50.

Background and aims

Enhanced aluminum (Al) resistance has been observed in dicots over-expressing enzymes involved in organic acid synthesis; however, this approach for improving Al resistance has not been investigated in monocots. Among the cereals, oat (Avena sativa L.) is considered to be Al resistant, but the basis of resistance is not known.

Methods

A hydroponic assay and hematoxylin staining for Al accumulation in roots were used to evaluate Al resistance in 15 oat cultivars. Malate and citrate release from roots was measured over a 24?h period. A malate dehydrogenase gene, neMDH, from alfalfa (Medicago sativa L.) was used to transform oat.

Results

Oat seedlings were highly resistant to Al, as a concentration of 325?μM AlK(SO4)2 was needed to cause a 50% decrease in root growth. Most oat cultivars tested are naturally resistant to high concentrations of Al and effectively excluded Al from roots. Al-dependent release of malate and Al-independent release of citrate was observed. Al resistance was enhanced in a transgenic oat line with the highest accumulation of neMDH protein. However, overall root growth of this line was reduced and expression of neMDH in transgenic oat did not enhance malate secretion.

Conclusions

Release of malate from oat roots was associated with Al resistance, which suggests that malate plays a role in Al resistance of oat. Over-expression of alfalfa neMDH enhanced Al resistance in some lines but was not effective alone for crop improvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号