首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4953篇
  免费   326篇
  国内免费   3篇
  2022年   21篇
  2021年   36篇
  2019年   32篇
  2018年   51篇
  2017年   44篇
  2016年   69篇
  2015年   109篇
  2014年   128篇
  2013年   246篇
  2012年   233篇
  2011年   226篇
  2010年   139篇
  2009年   144篇
  2008年   221篇
  2007年   220篇
  2006年   210篇
  2005年   231篇
  2004年   202篇
  2003年   249篇
  2002年   215篇
  2001年   197篇
  2000年   216篇
  1999年   173篇
  1998年   69篇
  1997年   59篇
  1996年   49篇
  1995年   52篇
  1994年   48篇
  1993年   51篇
  1992年   117篇
  1991年   116篇
  1990年   105篇
  1989年   109篇
  1988年   100篇
  1987年   74篇
  1986年   76篇
  1985年   51篇
  1984年   65篇
  1983年   50篇
  1982年   42篇
  1981年   33篇
  1980年   22篇
  1979年   43篇
  1978年   34篇
  1977年   31篇
  1976年   26篇
  1974年   33篇
  1973年   21篇
  1971年   27篇
  1970年   29篇
排序方式: 共有5282条查询结果,搜索用时 234 毫秒
921.
Fungi that can reduce elemental sulfur to sulfide are widely distributed, but the mechanism and physiological significance of the reaction have been poorly characterized. Here, we purified elemental sulfur-reductase (SR) and cloned its gene from the elemental sulfur-reducing fungus Fusarium oxysporum. We found that NADPH-glutathione reductase (GR) reduces elemental sulfur via glutathione as an intermediate. A loss-of-function mutant of the SR/GR gene generated less sulfide from elemental sulfur than the wild-type strain. Its growth was hypersensitive to elemental sulfur, and it accumulated higher levels of oxidized glutathione, indicating that the GR/glutathione system confers tolerance to cytotoxic elemental sulfur by reducing it to less harmful sulfide. The SR/GR reduced polysulfide as efficiently as elemental sulfur, which implies that soluble polysulfide shuttles reducing equivalents to exocellular insoluble elemental sulfur and generates sulfide. The ubiquitous distribution of the GR/glutathione system together with our findings that GR-deficient mutants derived from Saccharomyces cerevisiae and Aspergillus nidulans reduced less sulfur and that their growth was hypersensitive to elemental sulfur indicated a wide distribution of the system among fungi. These results indicate a novel biological function of the GR/glutathione system in elemental sulfur reduction, which is distinguishable from bacterial and archaeal mechanisms of glutathione- independent sulfur reduction.  相似文献   
922.
The studies of pathogen-prevention behaviors of termites have focused on hygiene behavior directed only against highly virulent pathogens. Therefore, we compared behavioral changes in the subterranean termite Coptotermes formosanus following contact with entomopathogenic fungi with different levels of virulence. The fungal virulence was inferred from the daily mortality and the LD50 value in previous data. When untreated termites were allowed to contact their fungus-inoculated nestmates, mutual grooming was frequent during 30 min after inoculation. The inoculated termites were often attacked and eaten by their uninoculated nestmates, and then buried after death. Notably, there was no influence of fungal virulence on these pathogen-prevention behaviors. However, the fungal isolates and genera affected not only the frequency of the behaviors but also the horizontal transmission pattern, the number of dead individuals and the survival period before the first death following infection.  相似文献   
923.
The generation of an inflammatory response driven by Trypanosoma cruzi or its subproducts appears to be essential for tissue injury and disease pathogenesis. However, this inflammatory response is also relevant in the control of T. cruzi replication. The lipid mediator platelet-activating factor (PAF) has been implicated in a number of pathological conditions characterized by tissue inflammation. In the present study, we aimed at evaluating the role of PAF during T. cruzi infection by using mice that were genetically deficient in the PAF receptor. We observed that infected hearts of PAFR(-/-) mice had an increased number of parasite nests, associated with a more intense inflammatory infiltrate. This was associated with greater parasitemia and lethality. When wild-type and PAFR(-/-) mice were compared, there were no marked changes in the kinetics of the expression of MCP-1, RANTES, IFN-gamma and TNF-alpha in heart tissue of infected animals. Moreover, serum concentrations of TNF-alpha, nitrate and parasite-specific IgM were similar in both groups of mice. In vitro, macrophages from PAFR(-/-) animals did not phagocytose trypomastigote forms when activated with PAF, leukotriene B(4) or MCP-1 and produced less nitric oxide when infected and activated with IFN-gamma. These results are consistent with the hypothesis that endogenous synthesis of PAF and activation of PAF receptors control T. cruzi replication in mice in great part via facilitation of the uptake of the parasite and consequent activation of macrophages.  相似文献   
924.
Intrasteric regulation of MDM2   总被引:1,自引:0,他引:1  
  相似文献   
925.
The metabolic regulation of Escherichia coli lacking a functional pykF gene was investigated based on gene expressions, enzyme activities, intracellular metabolite concentrations and the metabolic flux distribution obtained based on (13)C-labeling experiments. RT-PCR revealed that the glycolytic genes such as glk, pgi, pfkA and tpiA were down regulated, that ppc, pckA, maeB and mdh genes were strongly up-regulated, and that the oxidative pentose phosphate pathway genes such as zwf and gnd were significantly up-regulated in the pykF mutant. The catabolite repressor/activator gene fruR was up-regulated in the pykF mutant, but the adenylate cyclase gene cyaA was down-regulated indicating a decreased rate of glucose uptake. This was also ascertained by the degradation of ptsG mRNA, the gene for which was down-regulated in the pykF mutant. In general, the changes in enzyme activities more or less correlated with ratios of gene expression, while the changes in metabolic fluxes did not correlate with enzyme activities. For example, high flux ratios were obtained through the oxidative pentose phosphate pathway due to an increased concentration of glucose-6-phosphate rather than to favorable enzyme activity ratios. In contrast, due to decreased availability of pyruvate (and acetyl coenzyme A) in the pykF mutant compared with the wild type, low flux ratios were found through lactate and acetate forming pathways.  相似文献   
926.
The effects of substrates, inhibitors and tetrahydrobiopterin (H4B) on CO rebinding to the isolated heme-bound oxygenase domain (nNOSox) of neuronal nitric oxide synthase were examined by laser flash photolysis. The rate constant of CO recombination with substrate and inhibitor-free nNOSox in the absence of H4B was 1.0 x 10(6) M(-1) s(-1). The addition of H4B led to a marked decrease in the rate to 0.59 x 10(6) M(-1) s(-1). Interestingly, the substrates, L-Arg and N-hydroxy-L-Arg (NHA), altered CO binding behavior in that the binding rate was modified to CO concentration-independent, both with and without H4B. In the absence of H4B, agmatine, NG-monomethyl-L-Arg (NMMA) and NG-nitro-L-Arg methyl ester (NAME) decreased the CO concentration-dependent rate constants of rebinding by half (0.43 x 10(6) M(-1) s(-1) for the NMMA-bound complex), whereas N6-(l-iminoethyl)-L-Lys (NIL) and 7-nitro-1H-indazole (7-NI) increased the rate constants by more than 70% (up to 2.1 x 10(6) M(-1) s(-1) for the NIL-bound complex). In the presence of H4B, the binding rate was independent of CO concentration for the agmatine-bound complex. The differential effects of the inhibitors on the CO concentration-dependent rate constants were significantly diminished for the H4B-bound system. Interestingly, these variable effects of inhibitors on the CO binding rate were more pronounced in the absence of H4B. Accordingly, we suggest that H4B significantly influences CO binding by altering the CO access channel, and further reduces the divergent effects of different inhibitors.  相似文献   
927.
Shiga toxin 2-converting phage was isolated from Escherichia coli O157:H7 associated with an outbreak that occurred in Okayama, Japan in 1996 (M. Watarai, T. Sato, M. Kobayashi, T. Shimizu, S. Yamasaki, T. Tobe, C. Sasakawa and Y. Takeda, Infect. Immun. 61 (1998) 3210-3204). In this study, we analyzed the complete nucleotide sequence of Shiga toxin 2-converting phage, designated Stx2phi-I, and compared it with three recently reported Stx2-phage genomes. Stx2phi-I consisted of 61,765 bp, which included 166 open reading frames. When compared to 933W, VT2-Sakai and VT2-Sa phages, six characteristic regions (regions I-VI) were found in the Stx2 phage genomes although overall homology was more than 95% between these phages. Stx2phi-I exhibited remarkable differences in these regions as compared with VT-2 Sakai and VT2-Sa genes but not with 933W phage. Characteristic repeat sequences were found in regions I-IV where the genes responsible for the construction of head and tail are located. Regions V and VI, which are the most distinct portion in the entire phage genome were located in the upstream and downstream regions of the Stx2 operons that are responsible for the immunity and replication, and host lysis. These data indicated that Stx2phi-I is less homologous to VT2-Sakai and VT2-Sa phages, despite these three phages being found in the strains isolated at the almost same time in the same geographic region but closely related to 933W phage which was found in the E. coli O157 strain 933W isolated 14 years ago in a different geographic area.  相似文献   
928.
Compounds 1 or 2 which possess dual-acting PAF antagonist/TxSI in a previous paper were modified and evaluated for the dual-acting activity. It was found that several compounds were potent dual-acting PAF antagonist/TxSI in and ex vivo. 6-(2-Chlorophenyl)-3-[4-[(E/Z)-6-ethoxycarbonyl-1-(3-pyridyl)-1-hexenyl]phenylmethyl]-8,11-dimethyl-2,3,4,5-tetrahydro-8H-pyrido[4',3': 4,5]thieno[3,2-f]triazolo[4,3-a]diazepine (12) is excellent orally dual-acting PAF antagonist/TxSI.  相似文献   
929.
930.
We identified the extremely nitrite-tolerant bacterium Achromobacter denitrificans YD35 that can grow in complex medium containing 100 mM nitrite (NO2) under aerobic conditions. Nitrite induced global proteomic changes and upregulated tricarboxylate (TCA) cycle enzymes as well as antioxidant proteins in YD35. Transposon mutagenesis generated NO2-hypersensitive mutants of YD35 that had mutations at genes for aconitate hydratase and α-ketoglutarate dehydrogenase in the TCA cycle and a pyruvate dehydrogenase (Pdh) E1 component, indicating the importance of TCA cycle metabolism to NO2 tolerance. A mutant in which the pdh gene cluster was disrupted (Δpdh mutant) could not grow in the presence of 100 mM NO2. Nitrite decreased the cellular NADH/NAD+ ratio and the cellular ATP level. These defects were more severe in the Δpdh mutant, indicating that Pdh contributes to upregulating cellular NADH and ATP and NO2-tolerant growth. Exogenous acetate, which generates acetyl coenzyme A and then is metabolized by the TCA cycle, compensated for these defects caused by disruption of the pdh gene cluster and those caused by NO2. These findings demonstrate a link between NO2 tolerance and pyruvate/acetate metabolism through the TCA cycle. The TCA cycle mechanism in YD35 enhances NADH production, and we consider that this contributes to a novel NO2-tolerating mechanism in this strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号