首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   3篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
31.
The mouse glioma 261 (GL261) is recognized as an in vivo model system that recapitulates many of the features of human glioblastoma multiforme (GBM). The cell line was originally induced by intracranial injection of 3-methyl-cholantrene into a C57BL/6 syngeneic mouse strain (1); therefore, immunologically competent C57BL/6 mice can be used. While we use GL261, the following protocol can be used for the implantation and monitoring of any intracranial mouse tumor model. GL261 cells were engineered to stably express firefly luciferase (GL261-luc). We also created the brighter GL261-luc2 cell line by stable transfection of the luc2 gene expressed from the CMV promoter. C57BL/6-cBrd/cBrd/Cr mice (albino variant of C57BL/6) from the National Cancer Institute, Frederick, MD were used to eliminate the light attenuation caused by black skin and fur. With the use of albino C57BL/6 mice; in vivo imaging using the IVIS Spectrum in vivo imaging system is possible from the day of implantation (Caliper Life Sciences, Hopkinton, MA). The GL261-luc and GL261-luc2 cell lines showed the same in vivo behavior as the parental GL261 cells. Some of the shared histological features present in human GBMs and this mouse model include: tumor necrosis, pseudopalisades, neovascularization, invasion, hypercellularity, and inflammation (1). Prior to implantation animals were anesthetized by an intraperitoneal injection of ketamine (50 mg/kg), xylazine (5 mg/kg) and buprenorphine (0.05 mg/kg), placed in a stereotactic apparatus and an incision was made with a scalpel over the cranial midline. A burrhole was made 0.1 mm posterior to the bregma and 2.3mm to the right of the midline. A needle was inserted to a depth of 3mm and withdrawn 0.4 mm to a depth of 2.6 mm. Two μl of GL261-luc or GL261-luc2 cells (10(7) cells/ml) were infused over the course of 3 minutes. The burrhole was closed with bonewax and the incision was sutured. Following stereotactic implantation the bioluminescent cells are detectable from the day of implantation and the tumor can be analyzed using the 3D image reconstruction feature of the IVIS Spectrum instrument. Animals receive a subcutaneous injection of 150 μg luciferin /kg body weight 20 min prior to imaging. Tumor burden is quantified using mean tumor bioluminescence over time. Tumor-bearing mice were observed daily to assess morbidity and were euthanized when one or more of the following symptoms are present: lethargy, failure to ambulate, hunched posture, failure to groom, anorexia resulting in >10% loss of weight. Tumors were evident in all of the animals on necropsy.  相似文献   
32.
Hitherto unknown biological properties and the chemical composition of the essential oil isolated from propolis of Indian origin were established. GC/MS Analysis of the essential oil revealed the presence of 32 constituents, of which ten were major compounds, nine had intermediate contents, and 13 were minor compounds. With the exception of six minor constituents, that could not be identified, their identification was based on the comparison of their mass spectra and Kovats retention indices with those listed in the NIST and Wiley mass spectral libraries. Their structural assignment was confirmed by GC/MS co‐injection of the essential oil with authentic compounds. Quantification of the components was done by GC‐FID analyses. Moreover, the essential oil was shown to possess repellent activity against the honeybee Apis florea. The activity was found to be dose dependent. The average repellency (ΔR) increased with increasing essential‐oil concentration up to 24 μg/ml and remained constant for the formulation with the higher concentration. These findings established the chemical constitution of the essential oil and might be useful to beekeepers for the improvement of the bee management.  相似文献   
33.
We describe a divergent clade and three new rupicolous species of dwarf geckos of the genus Cnemaspis from the Mysore Plateau, southern India. Cnemaspis bangarasp. nov., C. graniticola sp. nov., and C.yelagiriensis sp. nov. differ from each other by 9%–18% uncorrected ND2 sequence divergence and other South Asian Cnemaspis by 17%–33% and are morphologically distinguishable from all regional congeners and each other. The new species are known from only granite boulders in montane habitats (>1,000 m asl.), just 60–120 km straight-line distance apart from each other. A fossil-calibrated timetree and ancestral area reconstructions indicate South Asian Cnemaspis originated in Western Ghats forests with initial divergence in the Paleocene-Eocene making it perhaps the oldest Indian squamate clade. Cnemaspis that occur in Peninsular India in the dry zone outside the Western Ghats form three independently derived clades that occur in significantly warmer and drier habitats than those in the Western Ghats. The discovery of a Miocene divergent clade from rocky hills on the southern edge of the Mysore Plateau reveals these habitats as novel, long-term climate refugia. This adds to the body of work revealing ancient origins of taxa in the Indian dry zone and supports the Mysore Plateau as an important and overlooked hot spot of lizard biodiversity.  相似文献   
34.
The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability.Key words: prion, yeast, sup35, PrP, nonsense suppression, translation termination, amyloid, repeatWe recently described a novel chimeric prion system that was designed to elucidate the consequences of one class of inherited prion disease mutations on protein folding.1,2 We created a fusion between the mammalian prion protein PrP and the yeast prion protein Sup35p (Fig. 1). Sup35p is an essential translation termination factor in yeast. Interestingly, the majority of the protein can be sequestered into a self-propagating aggregate, the [PSI+] prion.3 Remarkably, when yeast are grown in normal laboratory conditions, the [PSI+] prion is not detrimental. In fact, the biological consequences of the switch from the [psi−] non-prion state to the [PSI+] prion state may be beneficial in terms of adaptation and evolution.4 Importantly, the prion state of Sup35p can be readily detected in vivo by monitoring the reduced function of the translation termination factor when the protein is propagating as a prion aggregate.3 In addition, several methods have been developed to not only follow the propagation of the prion, but also to control the propagation and promote prion induction and loss (curing).5 Therefore, in addition to simply being a fascinating biological problem in of itself, the [PSI+] prion in yeast affords the ability to further elucidate both intragenic and extragenic effectors of prion biology.Open in a separate windowFigure 1Schematic representation of the yeast protein Sup35p and the mammalian prion protein PrP highlighting the position of the oligopeptide repeat domain (ORD). The amino acid sequence represents the consensus for a single repeat. Numbers shown represent the amino acid position of the beginning and the end of each ORD. The numbers above the schematic represent the original PrP amino acid positioning and the numbers below represent the original Sup35p amino acid sequence positions.Several prions have now been identified and interestingly, there is little sequence homology between the proteins to suggest that only one type of sequence can form a self-propagating aggregate.68 In vitro studies suggest that many proteins can form amyloids under the appropriate conditions.9 The fact that only a small percentage of proteins propagate as prions in vivo may be partly a consequence of physiological conditions being adequate to promote amyloid formation with those particular sequences. It is unclear what the precise distinction between prion and amyloid is at this time, but localization alone may preclude some amyloidogenic proteins from being “prion proteins” per se.10The sequence context that permits a protein to adopt a prion conformation in vivo is unclear. Several of the identified prion proteins have a domain that is enriched in glutamine and asparagine (Q/N) residues, but this is not true of all prion proteins.7 Our recent study demonstrates that the Q/N character of the Sup35p prion-forming domain can be significantly reduced, yet still propagate as a prion.1 This was also found recently in another prion protein chimera created and expressed in yeast.6 These studies suggest that the lack of stable secondary structure may be one of the defining features of a prion-forming domain. One of the striking sequence similarities that does exist between two prion proteins occurs in an oligopeptide repeat region found in Sup35p and PrP.11 Previous data clearly demonstrated that the Sup35p repeats are important for [PSI+] prion propagation.1215 The deletion of a single repeat from the wild type SUP35 sequence results in the loss of normal [PSI+] prion propagation.12 Moreover, the addition of two extra repeats of Sup35p sequence served to enhance the formation of the [PSI+] prion.13 The expansion of the analogous repeat domain in the mammalian prion protein PrP is associated with an inherited form of prion disease.16 Since the repeat regions of Sup35p and PrP are similar in size and character, we wanted to determine if the Sup35p oligopeptide repeat region could be substituted with that of PrP. Indeed, the PrP repeats in the context of Sup35p supported the propagation of the [PSI+] prion in yeast.1,17 Strikingly, we found phenotypic changes that occurred in a repeat length-dependent manner that suggested that the repeat expansions associated with disease result in an increase in the aggregation propensity but do not necessarily dictate only one type of aggregate structure.1More recently, we verified some of these results in vitro.2 These data are in agreement with other studies on the effect of repeat expansions.18,19 Taking the analysis one step further, we demonstrated that the stability of the amyloid fibers formed with the repeat-expanded proteins did not differ significantly. A very interesting observation that we made was that the formation of amyloid fibers by the longest repeat-expanded chimera (SP14NM) followed drastically different kinetics compared to the chimera containing the wild type number of repeats (SP5NM).2 In unseeded reactions, SP14NM did not show a lag phase during the course of fiber formation whereas SP5NM displayed a characteristic lag phase. Furthermore, the morphology of the amyloid fibers visualized by EM was different between SP14NM and SP5NM. SP14NM fibers were curvy and clumped but SP5NM fibers were long and straight. The correlation between the kinetics and the morphology of amyloid formation of SP14NM and SP5NM is reminiscent of fibers formed by β2-microglobulin (β2m) protein in different conditions.20 At pH 3.6, β2m formed curvy, worm-like fibers with no apparent lag phase. In contrast, long, straight fibers were formed at pH 2.5 and had a distinct lag phase. Analysis of the β2m fibers formed at pH 3.6 using mass spectrometric techniques identified species ranging from monomer to 13-mer. This suggested that the fibers were formed by monomer addition. On the other hand, oligomers larger than tetramers were not formed during fiber formation at pH 2.5. Based on these data the authors propose that β2m forms fibers in a nucleation-independent manner at pH 3.6, but fiber formation at pH 2.5 follows a nucleation-dependent mechanism. We suggest that the mechanism underlying SP5NM and repeat-expanded SP14NM fiber formation is similar to β2m fibers formed at pH 2.5 and pH 3.6, respectively. It will be interesting to determine if disease-associated mutations in amyloidogenic proteins alter the pathway whereby amyloid formation occurs and how that process plays a role in pathogenesis.In our in vivo study,1 we highlighted a unique feature of the longest Sup35-PrP chimera that related to the ability of the protein to adopt multiple self-perpetuating prion conformations more readily than wild type Sup35p. We suggest that this may be an important aspect of prion biology as it relates to inherited disease. If the repeat-expanded proteins can adopt multiple conformations that aggregate, then that may contribute to the large amount of variation observed in pathology and disease progression in this class of inherited prion diseases.21,22We also found that the spontaneous conversion of the repeat-expanded Sup35-PrP chimera into a prion state was significantly increased. However, this conversion required another aggregated protein in vivo, the [RNQ+] prion. In vitro, the prion-forming domain of the chimera showed a similar trend with the longer repeat lengths enhancing the ability of the protein to form amyloid fibers. The chimera with repeat expansions (8, 11 or 14 repeats) formed fibers very quickly as compared to that with the wild type number of repeats (5). While this correlates with the in vivo data in that both systems demonstrate an increased level of conversion with the repeat expansion, the systems are very different with respect to their requirement for a different “seed” to initiate the prion conversion. So, how does the [RNQ+] prion influence [PSI+]? At the moment, that isn''t entirely clear. Susan Liebman and colleagues discovered another epigenetic factor in yeast, [PIN+], which was important for the de novo induction of [PSI+].2325 Several years later, the [RNQ+] prion26 was found to be that factor in the commonly used [PSI+] laboratory strains, but they also found that the overexpression of other proteins could reproduce the effect.25 Hence, [RNQ+] can be [PIN+], and may be the primary epigenetic element that influences [PSI+] induction in yeast, but need not be in every case. Two models were proposed to explain the ability of [RNQ+] to influence the induction of [PSI+].25,27 One suggested that there is a direct templating effect where the aggregated state of the Rnq1 protein in the [RNQ+] prion serves as a seed for the direct physical association and aggregation of Sup35p and initiates [PSI+]. The second postulated that there is an inhibitor of aggregation in cells that is titrated out by the presence of another aggregated protein. Recent experimental evidence suggests that the templating model may explain at least part of the mechanism of action behind the [RNQ+] prion inducing the formation of [PSI+].28,29Why is [RNQ+] required for the in vivo conversion of the repeatexpanded chimera that forms amyloid on its own very efficiently in vitro? Interestingly, we found that the [RNQ+] prion per se is not required. We overexpressed the Rnq1 protein from a constitutive high promoter (pGPD-RNQ1) and found that Rnq1p aggregated in the cells but did not induce the [RNQ+] prion. That is, the cells were still [rnq−] and did not genetically transmit the aggregated state of the protein. However, even these non-prion aggregates of Rnq1p served to enhance the induction of the chimeric prions. Therefore, either the [RNQ+] prion or an aggregate of Rnq1 protein is sufficient, which is in line with previous studies that demonstrated that some proteins that aggregate when overexpressed can also enhance the induction of [PSI+].25 Also of note, recent data suggests that the requirement of [RNQ+] for the induction of Sup35p aggregation in vivo can be overcome by very long polyglutamine or glutamine/tyrosine stretches fused to the non-prion forming domain of Sup35p.30 These fusions may alter protein-protein interactions or destabilize the non-prion structure of Sup35p in such a manner that the [RNQ+] prion seed is no longer required to form [PSI+] de novo. Indeed, the non-polymerizing state of some of the fusion proteins was shown to be very unstable.So, what is the important difference between our in vitro and in vivo systems in the prion conversion? Obviously there are many candidates. First, the full length Sup35 protein may alter the conversion properties since a large part of the molecule is the structured C terminal domain. The C terminal domain may influence the initiation of prion propagation in vivo and that is not a factor in the in vitro system. Second, the influences of co-translational folding and potentially some initial unfolding of the prion-forming domain are not present since the in vitro system starts with denatured protein. Third, the environmental influences are clearly different. The molecular crowding effects and chaperones that are required for prion propagation in vivo are not required for the formation of amyloid in vitro. Finally, it is unclear if amyloid structures similar to those formed with the prion-forming domain in vitro actually exist in yeast. Certainly there is some correlation between the structures since aggregated Sup35 protein from [PSI+] cell lysates can seed amyloid formation in vitro31,32 and the fibers formed in vitro can be transformed into [psi−] cells and cause conversion to [PSI+].33 Nevertheless, we find it interesting that the expansion of the repeat region can have a tremendous effect on amyloid formation in vitro yet still cannot overcome the requirement for [RNQ+] for conversion in vivo. The presence of co-aggregating or cross-seeding proteins may play a role in the sporadic appearance or progression of neurodegenerative diseases and the interconnected yeast prions [RNQ+] and [PSI+] may provide a model system for elucidating the mechanism underlying such effects.  相似文献   
35.
Chitinolytic marine bacterial strains (30) were isolated from the sea dumps at Bhavnagar, India. They were screened as chitinase producers on the basis of zone of clearance on chitin agar plates incorporated with calcofluor white M2R for the better resolution. Out of these, three strains namely, Pseudomonas sp., Pantoea dispersa and Enterobacter amnigenus showed high chitinase production. They were also found to produce proteases and therefore have a good potential for use as antifungal biocontrol agents for the control of fungal plant pathogens. These strains could degrade and utilize the mycelia of Macrophomina phaseoliena (Tassi) Goidanich and Fusarium sp. In vitro, these strains could inhibit the growth of Fusarium sp. and M. phaseolina. The culture filtrate inhibiting hyphal elongation was observed microscopically.  相似文献   
36.
DNA barcodes analyzed by using relevant techniques provide an imperative approach towards validation of prevailing taxa and putative species. Here, molecular methods were used for assessment of 246 barcodes belonging to 81 fish species from northern Western Ghats of India, using, Barcode gap analysis, barcode index number, automatic barcode gap discovery, Poisson tree processes and general mixed Yule-coalescent, these methods had their potential to discriminate 97.53%, 93.90% 95.06%, 93.82% and 92.59% of species respectively. But, some of them tended to estimate the inconsistent number of species leading to discrepancies between the morphological concept and inference from molecular phylogenetic reconstructions. So, we took a standard approach to recognize those methods that produced consistent results, three of five such methods were identified that revealed three hidden cryptic species complexes in Monopterus indicus, Parambassis ranga and Systomus sarana. Further, to validate these three genetically diverged species, we used diagnostic character based approach along with nine unidentified species through BLOG and WEKAs SMO classifier. Those methods were unable to identify these species, which might be due to the limited number of specimens used for the analysis. This is the first effort to generate the DNA barcode reference library of freshwater fishes from northern Western Ghats of India, one of the world’s biodiversity hotspots. These barcodes when analyzed through the defined workflow, will provide valuable measures to prove the efficiency of molecular species delimitation methods in taxonomic discrimination which aid conservation of biodiversity.  相似文献   
37.
Abstract: The protein quality control network (pQC) plays critical roles in maintaining protein and cellular homeostasis, especially during stress. Lon is a major pQC AAA+ protease, conserved from bacteria to human mitochondria. It is the principal enzyme that degrades most unfolded or damaged proteins. Degradation by Lon also controls cellular levels of several key regulatory proteins. Recently, our group determined that Escherichia coli Lon, previously thought to be an obligate homo‐hexamer, also forms a dodecamer. This larger assembly has decreased ATPase activity and displays substrate‐specific alterations in degradation compared with the hexamer. Here we experimentally probe the physical hexamer–hexamer interactions and the biological roles of the Lon dodecamer. Using structure prediction methods coupled with mutagenesis, we identified a key interface and specific residues within the Lon N domain that participates in an intermolecular coiled coil unique to the dodecamer. With this knowledge, we made a Lon variant (LonVQ) that forms a dodecamer with increased stability, as determined by analytical ultracentrifugation and electron microscopy. Using this altered Lon, we characterize the Lon dodecamer's activities using a panel of substrates. Lon dodecamers are clearly functional, and complement critical lon‐ phenotypes but also exhibit altered substrate specificity. For example, the small heat shock proteins IbpA and IbpB are only efficiently degraded well by the hexamer. Thus, by elucidating the intermolecular contacts connecting the hexamers, we are starting to illuminate how dodecamer formation versus disassembly can alter Lon function under conditions where controlling specific activities and substrate preferences of this key protease may be advantageous.  相似文献   
38.
39.
40.
The most frequent known causes of primary cardiomyopathies are mutations in the genes encoding sarcomeric proteins. Among those are 30 single-residue mutations in TPM1, the gene encoding α-tropomyosin. We examined seven mutant tropomyosins, E62Q, D84N, I172T, L185R, S215L, D230N, and M281T, that were chosen based on their clinical severity and locations along the molecule. The goal of our study was to determine how the biochemical characteristics of each of these mutant proteins are altered, which in turn could provide a structural rationale for treatment of the cardiomyopathies they produce. Measurements of Ca2+ sensitivity of human β-cardiac myosin ATPase activity are consistent with the hypothesis that hypertrophic cardiomyopathies are hypersensitive to Ca2+ activation, and dilated cardiomyopathies are hyposensitive. We also report correlations between ATPase activity at maximum Ca2+ concentrations and conformational changes in TnC measured using a fluorescent probe, which provide evidence that different substitutions perturb the structure of the regulatory complex in different ways. Moreover, we observed changes in protein stability and protein-protein interactions in these mutants. Our results suggest multiple mechanistic pathways to hypertrophic and dilated cardiomyopathies. Finally, we examined a computationally designed mutant, E181K, that is hypersensitive, confirming predictions derived from in silico structural analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号