首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   8篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   15篇
  2014年   15篇
  2013年   13篇
  2012年   14篇
  2011年   21篇
  2010年   12篇
  2009年   8篇
  2008年   8篇
  2007年   9篇
  2006年   6篇
  2005年   10篇
  2004年   6篇
  2003年   9篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1971年   2篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
131.
132.
Biodiversity loss—one of the most prominent forms of modern environmental change—has been heavily driven by terrestrial habitat loss and, in particular, the spread and intensification of agriculture. Expanding agricultural land-use has led to the search for strong conservation strategies, with some suggesting that biodiversity conservation in agriculture is best maximized by reducing local management intensity, such as fertilizer and pesticide application. Others highlight the importance of landscape-level approaches that incorporate natural or semi-natural areas in landscapes surrounding farms. Here, we show that both of these practices are valuable to the conservation of biodiversity, and that either local or landscape factors can be most crucial to conservation planning depending on which types of organisms one wishes to save. We performed a quantitative review of 266 observations taken from 31 studies that compared the impacts of localized (within farm) management strategies and landscape complexity (around farms) on the richness and abundance of plant, invertebrate and vertebrate species in agro-ecosystems. While both factors significantly impacted species richness, the richness of sessile plants increased with less-intensive local management, but did not significantly respond to landscape complexity. By contrast, the richness of mobile vertebrates increased with landscape complexity, but did not significantly increase with less-intensive local management. Invertebrate richness and abundance responded to both factors. Our analyses point to clear differences in how various groups of organisms respond to differing scales of management, and suggest that preservation of multiple taxonomic groups will require multiple scales of conservation.  相似文献   
133.
Osteoporosis is a silent disease, characterized by a porous bone micro-structure that enhances risk for fractures and associated disabilities. Senile, or age-related osteoporosis (SO), affects both men and women, resulting in increased morbidity and mortality. However, cellular and molecular mechanisms underlying senile osteoporosis are not fully known. Recent studies implicate the accumulation of reactive oxygen species (ROS) and increased oxidative stress as key factors in SO. Herein, we show that loss of caspase-2, a cysteine aspartate protease involved in oxidative stress-induced apoptosis, results in total body and femoral bone loss in aged mice (20% decrease in bone mineral density), and an increase in bone fragility (30% decrease in fracture strength). Importantly, we demonstrate that genetic ablation or selective inhibition of caspase-2 using zVDVAD-fmk results in increased numbers of bone-resorbing osteoclasts and enhanced tartrate-resistant acid phosphatase (TRAP) activity. Conversely, transfection of osteoclast precursors with wild type caspase-2 but not an enzymatic mutant, results in a decrease in TRAP activity. We demonstrate that caspase-2 expression is induced in osteoclasts treated with oxidants such as hydrogen peroxide and that loss of caspase-2 enhances resistance to oxidants, as measured by TRAP activity, and decreases oxidative stress-induced apoptosis of osteoclasts. Moreover, oxidative stress, quantified by assessment of the lipid peroxidation marker, 4-HNE, is increased in Casp2-/- bone, perhaps due to a decrease in antioxidant enzymes such as SOD2. Taken together, our data point to a critical and novel role for caspase-2 in maintaining bone homeostasis by modulating ROS levels and osteoclast apoptosis during conditions of enhanced oxidative stress that occur during aging.  相似文献   
134.
Laura M. E. Sutcliffe  Pter Batry  Urs Kormann  Andrs Bldi  Lynn V. Dicks  Irina Herzon  David Kleijn  Piotr Tryjanowski  Iva Apostolova  Raphaël Arlettaz  Ainars Aunins  Stphanie Aviron  Ligita Baleentien&#x;  Christina Fischer  Lubos Halada  Tibor Hartel  Aveliina Helm  Iordan Hristov  Sven D. Jelaska  Mitja Kaligari   Johannes Kamp  Sebastian Klimek  Pille Koorberg  Jarmila Kostiukov  Anik Kovcs‐Hostynszki  Tobias Kuemmerle  Christoph Leuschner  Regina Lindborg  Jacqueline Loos  Simona Maccherini  Riho Marja  Orsolya Mth  Inge Paulini  Vnia Proena  Jos Rey‐Benayas  F. Xavier Sans  Charlotte Seifert  Jaros&#x;aw Stalenga  Johannes Timaeus  Pter Trk  Chris van Swaay  Eneli Viik  Teja Tscharntke 《Diversity & distributions》2015,21(6):722-730
A large proportion of European biodiversity today depends on habitat provided by low‐intensity farming practices, yet this resource is declining as European agriculture intensifies. Within the European Union, particularly the central and eastern new member states have retained relatively large areas of species‐rich farmland, but despite increased investment in nature conservation here in recent years, farmland biodiversity trends appear to be worsening. Although the high biodiversity value of Central and Eastern European farmland has long been reported, the amount of research in the international literature focused on farmland biodiversity in this region remains comparatively tiny, and measures within the EU Common Agricultural Policy are relatively poorly adapted to support it. In this opinion study, we argue that, 10 years after the accession of the first eastern EU new member states, the continued under‐representation of the low‐intensity farmland in Central and Eastern Europe in the international literature and EU policy is impeding the development of sound, evidence‐based conservation interventions. The biodiversity benefits for Europe of existing low‐intensity farmland, particularly in the central and eastern states, should be harnessed before they are lost. Instead of waiting for species‐rich farmland to further decline, targeted research and monitoring to create locally appropriate conservation strategies for these habitats is needed now.  相似文献   
135.
Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits.  相似文献   
136.
Hemangioblastomas of the retina, central nervous system, and kidney are observed in patients with mutations in the von Hippel-Lindau (VHL) tumor suppressor gene. Mutations in the VHL lead to constitutive activation of hypoxia-inducible-factor (HIF) pathway. HIF-mediated expression of pro-angiogenic genes causes extensive pathological neovascularization in hemangioblastomas. A number of studies have shown coexistence of pro-angiogenic and stem cell markers in ‘tumorlet-like stromal cells’ in the retinal and optic nerve hemangioblastomas, leading to suggestions that hemangioblastomas originate from developmentally arrested stem cells or embryonic progenitors. Since recent studies have shown that the HIF pathway also plays a role in the maintenance/de-differentiation of normal and cancerous stem cells, we evaluated the role of the HIF pathway in the expression of stem cell markers in VHL−/− renal cell carcinoma cells under normoxia or VHL+/+ retinal pigment epithelial cells under hypoxia. Here we show that the expression of stem cell markers in hemangioblastomas is due to activation of the HIF pathway. Further, we show that honokiol, digoxin, and doxorubicin, three recently identified HIF inhibitors from natural sources, blocks the expression of stem cell markers. Our results show the mechanism for the cytological origin of neoplastic stromal cells in hemangioblastomas, and suggest that inhibition of the HIF pathway is an attractive strategy for the treatment of hemangioblastomas.  相似文献   
137.
Hypoxia-inducible-factor (HIF)-mediated expression of pro-angiogenic genes under hypoxic conditions is the fundamental cause of pathological neovascularization in retinal ischemic diseases and cancers. Recent studies have shown that histone lysine demethylases (KDMs) play a key role in the amplification of HIF signaling and expression of pro-angiogenic genes. Thus, the inhibitors of the HIF pathway or KDMs can have profound therapeutic value for diseases caused by pathological neovascularization. Here, we show that hypoxia-mediated expression of KDMs is a conserved process across multiple cell lines. Moreover, we report that honokiol, a biphenolic phytochemical extracted from Magnolia genus which has been used for thousands of years in the traditional Japanese and Chinese medicine, is a potent inhibitor of the HIF pathway as well as hypoxia-induced expression of KDMs in a number of cancer and retinal pigment epithelial cell lines. Further, treating the cells with honokiol leads to inhibition of KDM-mediated induction of pro-angiogenic genes (adrenomedullin and growth differentiation factor 15) under hypoxic conditions. Our results provide an evidence-based scientific explanation for therapeutic benefits observed with honokiol and warrant its further clinical evaluation for the treatment of pathological neovascularization in retinal ischemic diseases and cancers.  相似文献   
138.
Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral–collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral–collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures.  相似文献   
139.
Tree species-rich forests are hypothesised to be less susceptible to insect herbivores, but so far herbivory–diversity relationships have rarely been tested for tree saplings, and no such study has been published for deciduous forests in Central Europe. We expected that diverse tree communities reduce the probability of detection of host plants and increase abundance of predators, thereby reducing herbivory. We examined levels of herbivory suffered by beech (Fagus sylvatica L.) and maple saplings (Acer pseudoplatanus L. and Acer platanoides L.) across a tree species diversity gradient within Germany’s largest remaining deciduous forest area, and investigated whether simple beech or mixed stands were less prone to damage caused by herbivorous insects. Leaf area loss and the frequency of galls and mines were recorded for 1,040 saplings (>13,000 leaves) in June and August 2006. In addition, relative abundance of predators was assessed to test for potential top-down control. Leaf area loss was generally higher in the two species of maple compared to beech saplings, while only beech showed a decline in damage caused by leaf-chewing herbivores across the tree diversity gradient. No significant patterns were found for galls and mines. Relative abundance of predators on beech showed a seasonal response and increased on species-rich plots in June, suggesting higher biological control. We conclude that, in temperate deciduous forests, herbivory–tree diversity relationships are significant, but are tree species-dependent with bottom-up and top-down control as possible mechanisms. In contrast to maple, beech profits from growing in a neighbourhood of higher tree richness, which implies that species identity effects may be of greater importance than tree diversity effects per se. Hence, herbivory on beech appeared to be mediated bottom-up by resource concentration in the sampled forest stands, as well as regulated top-down through biocontrol by natural enemies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号