首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   8篇
  216篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   15篇
  2014年   15篇
  2013年   13篇
  2012年   14篇
  2011年   21篇
  2010年   13篇
  2009年   10篇
  2008年   9篇
  2007年   9篇
  2006年   9篇
  2005年   10篇
  2004年   6篇
  2003年   10篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1979年   1篇
  1976年   1篇
  1971年   2篇
  1962年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
101.
102.
Bats and birds increase crop yield in tropical agroforestry landscapes   总被引:1,自引:0,他引:1  
Human welfare is significantly linked to ecosystem services such as the suppression of pest insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield are still largely unknown. For the first time, we manipulated the access of birds and bats in an exclosure experiment (day, night and full exclosures compared to open controls in Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit development and the final yield over a long time period (15 months). We found that bat and bird exclusion increased insect herbivore abundance, despite the concurrent release of mesopredators such as ants and spiders, and negatively affected fruit development, with final crop yield decreasing by 31% across local (shade cover) and landscape (distance to primary forest) gradients. Our results highlight the tremendous economic impact of common insectivorous birds and bats, which need to become an essential part of sustainable landscape management.  相似文献   
103.
We compared the parasitoid communities associated with grass-feeding herbivores in Germany and Britain to examine geographical consistency in community composition and to test ecological characteristics of the plants and host insects that may explain variability in parasitoid community structure. The parasitoid communities of 16 chalcid wasps feeding on ten grass species were sampled between 1986 and 1989 at 4-11 sites per grass species in southwest Germany. The data were compared to published data from Great Britain, comprising 18 chalcid hosts on ten grass species sampled between 1980 and 1992 at 24 sites in Wales and England. Results showed that many conclusions drawn from patterns in Britain did not hold for Germany, emphasizing the need to repeat analyses in different geographical regions. The parasitoid communities of the Tetramesa hosts included on average 8.1 parasitoid species in Germany, while the British hosts supported only 4.1 parasitoids. The number of monophagous parasitoid species was similar in both areas (2.4 vs 3.2), but German host populations supported many more polyphagous species (5.1 vs 0.9). This difference reinforces the earlier conclusion that parasitoid communities in Britain are highly undersaturated. Increased numbers of parasitoid species in Germany did not result in increased parasitism rates, so the closer species packing was paralleled by reduced impact of each species. In Germany, percent parasitism (range: 5-74%) was closely correlated with log host density, explaining 90% of the variance, while in Great Britain, percent parasitism was less variable (range: 36-76%) and was not related to host density or other host or host plant characteristics. Gallers and non-gallers supported equal numbers of parasitoids in both Germany and Britain, offering support for neither the enemy hypothesis of the adaptive nature of plant galls nor for the finding that galls are often more susceptible to enemy attack than their non-galling relatives. Furthermore, gregarious Tetramesa hosts were not attacked by more parasitoid species than solitary hosts.  相似文献   
104.
Prolonged diabetes ultimately leads to Diabetic Retinopathy (DR) which is one of the leading causes of preventable blindness in theworld. Through advanced image analysis techniques are used for abnormalities detection in retina that define and correlate theseverity of DR. A thorough study is done in this area in recent past years and on the basis of these studies we have developed acomputer based prediction model that is used to determine the severity of DR. To identify severity DR, we have analyzed thehuman eye image. We have extracted some important features from human eye image i.e. Blood Artery, Optical disc, Exudates.Based on these image and data we have designed an automated system for the determination of DR severity. This automated DRseverity assessment methods can be used to predict the clinical case and conditions when young clinicians would agree or disagreewith their more experienced fellow members. The algorithms described in this study may be used in clinical practice to validate orinvalidate the diagnoses. Algorithms or method developed here may also be used for pooling diagnostic knowledge for servingmankind. Here we have described a computational based low cost retinal diagnostic approach which can aid an ophthalmologist toquickly diagnose the various stages of DR. This system can accept retinal images and can successfully detect any pathologicalcondition associated with DR.  相似文献   
105.
Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar–acid–ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality.  相似文献   
106.
Agricultural intensification may result in important shifts in insect community composition and function, but this remains poorly explored. Studying how groups of species with shared traits respond to local and landscape scale land-use management can reveal mechanisms behind such observed impacts. We tested if ground beetles (Coleoptera: Carabidae) divided into trait groups based on body sizes, wing morphologies and dietary preferences respond differently to farming practise (organic and conventional), farming intensity (measured as yield) and landscape complexity (measured as the proportion of arable land within a 1,000 m radius) across Europe. We used data from 143 farms in five regions in northern and central Europe. Organic farms did not differ in abundance or richness of any trait group compared to conventional farms. As farm scale intensity (yield) increased, overall abundance of beetles decreased, but abundances of small and medium sized beetles, as well as that of wingless beetles, were unaffected. Overall species richness was not affected by yield, whereas consideration of traits revealed that phytophagous and omnivorous beetles were less species rich on farms with high yields. Increasing the proportion of arable land in the landscape increased overall beetle abundance. This was driven by an increase in omnivorous beetles. The total species richness was not affected by an increase in the proportion arable land, although the richness of wingless beetles was found to increase. Potential effects on ecosystem functioning need to be taken into account when designing schemes to maintain agricultural biodiversity, because species with different ecological traits respond differently to local management and landscape changes.  相似文献   
107.
During the last 50 years, agricultural intensification has caused many wild plant and animal species to go extinct regionally or nationally and has profoundly changed the functioning of agro-ecosystems. Agricultural intensification has many components, such as loss of landscape elements, enlarged farm and field sizes and larger inputs of fertilizer and pesticides. However, very little is known about the relative contribution of these variables to the large-scale negative effects on biodiversity. In this study, we disentangled the impacts of various components of agricultural intensification on species diversity of wild plants, carabids and ground-nesting farmland birds and on the biological control of aphids.In a Europe-wide study in eight West and East European countries, we found important negative effects of agricultural intensification on wild plant, carabid and bird species diversity and on the potential for biological pest control, as estimated from the number of aphids taken by predators. Of the 13 components of intensification we measured, use of insecticides and fungicides had consistent negative effects on biodiversity. Insecticides also reduced the biological control potential. Organic farming and other agri-environment schemes aiming to mitigate the negative effects of intensive farming on biodiversity did increase the diversity of wild plant and carabid species, but – contrary to our expectations – not the diversity of breeding birds.We conclude that despite decades of European policy to ban harmful pesticides, the negative effects of pesticides on wild plant and animal species persist, at the same time reducing the opportunities for biological pest control. If biodiversity is to be restored in Europe and opportunities are to be created for crop production utilizing biodiversity-based ecosystem services such as biological pest control, there must be a Europe-wide shift towards farming with minimal use of pesticides over large areas.  相似文献   
108.
109.
Mass flowering crops enhance pollinator densities at a landscape scale   总被引:7,自引:3,他引:7  
To counteract the decline of pollinators in Europe, conservation strategies traditionally focus on enhancing the local availability of semi‐natural habitats, as supported by the European Union's Common Agriculture Policy. In contrast, we show that densities of bumblebees, an important pollinator group in agroecosystems, were not determined by the proportion of semi‐natural habitats in agricultural landscapes. Instead, bumblebee densities were positively related to the availability of highly rewarding mass flowering crops (i.e. oilseed rape) in the landscape. In addition, mass flowering crops were only effective determinants of bumblebee densities when grown extensively at the landscape scale, but not at smaller local scales. Therefore, future conservation measures should consider the importance of mass flowering crops and the need for management schemes at landscape level to sustain vital pollination services in agroecosystems.  相似文献   
110.
Agricultural intensification (AI) is currently a major driver of biodiversity loss and related ecosystem functioning decline. However, spatio-temporal changes in community structure induced by AI, and their relation to ecosystem functioning, remain largely unexplored. Here, we analysed 16 quantitative cereal aphid–parasitoid and parasitoid–hyperparasitoid food webs, replicated four times during the season, under contrasting AI regimes (organic farming in complex landscapes vs. conventional farming in simple landscapes). High AI increased food web complexity but also temporal variability in aphid–parasitoid food webs and in the dominant parasitoid species identity. Enhanced complexity and variability appeared to be controlled bottom-up by changes in aphid dominance structure and evenness. Contrary to the common expectations of positive biodiversity–ecosystem functioning relationships, community complexity (food-web complexity, species richness and evenness) was negatively related to primary parasitism rates. However, this relationship was positive for secondary parasitoids. Despite differences in community structures among different trophic levels, ecosystem services (parasitism rates) and disservices (aphid abundances and hyperparasitism rates) were always higher in fields with low AI. Hence, community structure and ecosystem functioning appear to be differently influenced by AI, and change differently over time and among trophic levels. In conclusion, intensified agriculture can support diverse albeit highly variable parasitoid–host communities, but ecosystem functioning might not be easy to predict from observed changes in community structure and composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号