首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   928篇
  免费   57篇
  国内免费   1篇
  986篇
  2021年   5篇
  2020年   14篇
  2019年   10篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   15篇
  2014年   22篇
  2013年   64篇
  2012年   51篇
  2011年   37篇
  2010年   24篇
  2009年   29篇
  2008年   52篇
  2007年   53篇
  2006年   53篇
  2005年   57篇
  2004年   58篇
  2003年   51篇
  2002年   52篇
  2001年   36篇
  2000年   31篇
  1999年   29篇
  1998年   23篇
  1997年   6篇
  1996年   11篇
  1995年   8篇
  1994年   7篇
  1993年   4篇
  1992年   21篇
  1991年   24篇
  1990年   15篇
  1989年   9篇
  1988年   16篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   5篇
  1983年   7篇
  1982年   3篇
  1981年   2篇
  1980年   7篇
  1979年   3篇
  1975年   4篇
  1974年   2篇
  1972年   2篇
  1970年   2篇
  1968年   2篇
  1967年   1篇
  1961年   1篇
排序方式: 共有986条查询结果,搜索用时 15 毫秒
131.
Decay-accelerating factor (DAF) is one of the complement regulatory proteins. Two isoforms of DAF have been identified in humans. In this study, we isolated novel cDNAs encoding five isoforms of DAF from the human lung, which were generated by insertion of new exonic sequences. RT-PCR revealed that all isoforms were expressed in almost all tissues tested, although the expression patterns and levels differed among the tissues. Transfection of isoform vDAF1, 2, and 3 cDNAs into CHO cells showed that these molecules are soluble forms secreted after glycosylation. Isoform vDAF4 and vDAF5 cDNAs included a part of and the entire intron 7 sequence, respectively, and the transfection of vDAF4 cDNA produced a large, glycosylated, membrane-bound form. These results suggest that more than seven isoforms of human DAF are involved in the regulation of complement activation under physiological conditions through their specific structures and localization.  相似文献   
132.
A noninhibitory medium and GasPack anaerobic culture system were employed for the selective enumeration and isolation of Vibrionaceae in seawater and marine sediments.Vibrio counts obtained by the new method for seawater and sediment samples were compared with vibrio numbers in the heterotrophic bacterial population appearing on a medium routinely employed in the laboratory for such counts. The ratio of the former to the latter counts ranged from 0.5 to 1.3, the average being 0.96. The seawater and sediment bacteria that grew and produced visible colonies on the medium under anaerobic conditions for 3 days at 20°C were almost exclusively vibrios.From the results reported here it is concluded that most of the vibrios present in seawater and sediment samples can be recovered by the new method developed in this study.  相似文献   
133.
Depletion of peroxisome proliferator-activated receptor gamma (PPARgamma) represents one of the key molecular changes that underlie transdifferentiation (activation) of hepatic stellate cells in the genesis of liver fibrosis (Miyahara, T., Schrum, L., Rippe, R., Xiong, S., Yee, H. F., Jr., Motomura, K., Anania, F. A., Willson, T. M., and Tsukamoto, H. (2000) J. Biol. Chem. 275, 35715-35722; Hazra, S., Xiong, S., Wang, J., Rippe, R. A., Krishna, V., Chatterjee, K., and Tsukamoto, H. (2004) J. Biol. Chem. 279, 11392-11401). In support of this notion, ectopic expression of PPARgamma suppresses hepatic stellate cells activation markers, most notably expression of alpha1(I) procollagen. However, the mechanisms underlying this antifibrotic effect are largely unknown. The present study utilized deletion-reporter gene constructs of proximal 2.2-kb alpha1(I) procollagen promoter to demonstrate that a region proximal to -133 bp is where PPARgamma exerts its inhibitory effect. Within this region, two DNase footprints with Sp1 and reverse CCAAT box sites exist. NF-I, but not CCAAT DNA-binding factor/NF-Y, binds to the proximal CCAAT box in hepatic stellate cells. A mutation of this site almost completely abrogates the promoter activity. NF-I mildly but independently stimulates the promoter activity and synergistically promotes Sp1-induced activity. PPARgamma inhibits NF-I binding to the most proximal footprint (-97/-85 bp) and inhibits its transactivity. The former effect is mediated by the ability of PPARgamma to inhibit p300-facilitated NF-I binding to DNA as demonstrated by chromatin immunoprecipitation assay.  相似文献   
134.
135.
Mononuclear phagocyte (macrophages and microglia) dysfunction plays a significant role in the pathogenesis of human immunodeficiency virus (HIV) associated dementia (HAD) through the production and release of soluble neurotoxic factors including glutamate. The mechanism of glutamate regulation by HIV-1 infection remains unclear. In this report, we investigated whether the enzyme glutaminase is responsible for glutamate generation by HIV-1 infected monocyte-derived macrophages. We tested the functionality of novel small molecule inhibitors designed to specifically block the activity of glutaminase. Glutaminase inhibitors were first characterized in a kinetic assay with crude glutaminase from rat brain revealing an uncompetitive mechanism of inhibition. The inhibitors were then tested in vitro for their ability to prevent glutamate generation by HIV-infected macrophages, their effect upon macrophage viability, and HIV infection. To validate these findings, glutaminase specific siRNA was tested for its ability to prevent glutamate increase during infection. Our results show that both glutaminase specific small molecule inhibitors and glutaminase specific siRNA were effective at preventing increases in glutamate by HIV-1 infected macrophage. These findings support glutaminase as a potential component of the HAD pathogenic process and identify a possible therapeutic avenue for the treatment of neuroinflammatory states such as HAD.  相似文献   
136.
137.
138.
139.
Rapid depletion of memory CD4+ T cells and delayed induction of neutralizing antibody (NAb) responses are characteristics of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. Although it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV replication, a recent study has shown that a single passive NAb immunization of rhesus macaques 1 week after SIV challenge can result in reduction of viral loads at the set point, indicating a possible contribution of postinfection NAb responses to virus control. However, the mechanism accounting for this NAb-triggered SIV control has remained unclear. Here, we report rapid induction of virus-specific polyfunctional T-cell responses after the passive NAb immunization postinfection. Analysis of SIV Gag-specific responses of gamma interferon, tumor necrosis factor alpha, interleukin-2, macrophage inflammatory protein 1β, and CD107a revealed that the polyfunctionality of Gag-specific CD4+ T cells, as defined by the multiplicity of these responses, was markedly elevated in the acute phase in NAb-immunized animals. In the chronic phase, despite the absence of detectable NAbs, virus control was maintained, accompanied by polyfunctional Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered virus control, suggesting possible synergism between NAbs and T cells for control of HIV/SIV replication.Virus-specific CD4+ and CD8+ T-cell responses are crucial for the control of pathogenic human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) infections (5, 6, 20, 23, 30, 39, 40). However, CD4+ T cells, especially CCR5+ memory CD4+ T cells, are themselves targets for these viruses, which may be an obstacle to potent virus-specific CD4+ T-cell induction (10, 47, 52). Indeed, HIV-1/SIV infection causes rapid, massive depletion of memory CD4+ T cells (26, 31), and host immune responses fail to contain viral replication and allow persistent chronic infection, although virus-specific CD8+ T-cell responses exert suppressive pressure on viral replication (15).Recently, the importance of T-cell quality in virus containment has been high-lighted, and T-cell polyfunctionality, which is defined by their multiplicity of antigen-specific cytokine production, has been analyzed as an indicator of T-cell quality (4, 8, 11, 41). However, there has been no evidence indicating an association of polyfunctional T-cell responses in the acute phase with HIV-1/SIV control. Even in the chronic phase, whether polyfunctional CD4+ T-cell responses may be associated with virus control has been unclear, although an inverse correlation between polyfunctional CD8+ T-cell responses and viral loads has been shown in HIV-1-infected individuals (4).Another characteristic of HIV-1/SIV infections is the absence of potent neutralizing antibody (NAb) induction during the acute phase (7). This is mainly due to the unusually neutralization-resistant nature of the virus, such as masking of target epitopes in viral envelope proteins (24). Whether this lack of effective NAb response contributes to the failure to control the virus, and whether NAb induction in the acute phase can contribute to virus control, remains unclear. Previous studies documenting virus escape from NAb recognition suggested that NAbs can also exert selective pressure on viral replication to a certain extent (38, 45, 49), but it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV-1/SIV replication (34, 37).By passive NAb immunization of rhesus macaques after SIV challenge, we recently provided evidence indicating that the presence of NAbs during the acute phase can result in SIV control (50). In that study, passive NAb immunization 1 week after SIVmac239 challenge resulted in transient detectable NAb responses followed by reduction in set point viral loads compared to unimmunized macaques. However, the mechanism of this virus control has remained unclear. In the present study, we found rapid appearance of polyfunctional Gag-specific CD4+ T-cell responses after such passive NAb immunization postinfection. These animals maintained virus control for more than 1 year in the absence of detectable plasma NAbs, which was accompanied by potent Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered primary and long-term SIV control.  相似文献   
140.
Helicobacter pylori infection is well accepted to be a very important factor for the development of gastric carcinogenesis in the human stomach. In Mongolian gerbils treated with chemical carcinogens, H. pylori infection enhances glandular stomach carcinogenesis, and eradication of infection and results in curtailment of enhancing effects, particularly at early stages of associated inflammation. A high-salt diet exacerbates the effects of H. pylori infection on gastric carcinogenesis, and these two factors act synergistically to promote the development of gastric cancers in this animal model. However, the bacterium exerts the greater effects. Early acquisition significantly increases gastric chemical carcinogenesis in Mongolian gerbils, as compared to later infection. While heterotopic proliferative glands, hyperplastic and dilated glands localized beneath the muscularis mucosae, frequently develop with H. pylori infection alone in this animal model, they obviously regress on eradication, suggesting a relation to severe gastritis, rather than a malignant character. Furthermore, endocrine cells, positive for chromogranin A, are observed in the heterotopic proliferative glands, in contrast to cancerous lesions which lack endocrine elements. In conclusion, H. pylori is not an initiator, but rather a strong promoter of gastric carcinogenesis, whose eradication, together with reduction in salt intake, might effectively prevent gastric cancer development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号