首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   16篇
  295篇
  2022年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   8篇
  2014年   7篇
  2013年   28篇
  2012年   16篇
  2011年   16篇
  2010年   8篇
  2009年   3篇
  2008年   15篇
  2007年   13篇
  2006年   10篇
  2005年   14篇
  2004年   16篇
  2003年   10篇
  2002年   20篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1969年   3篇
  1966年   1篇
  1960年   1篇
排序方式: 共有295条查询结果,搜索用时 0 毫秒
61.
The soybean major storage protein glycinin is encoded by five genes, which are divided into two subfamilies. Expression of A3B4 glycinin in transgenic rice seed reached about 1.5% of total seed protein, even if expressed under the control of strong endosperm-specific promoters. In contrast, expression of A1aB1b glycinin reached about 4% of total seed protein. Co-expression of the two proteins doubled accumulation levels of both A1aB1b and A3B4 glycinins. This increase can be largely accounted for by their aggregation with rice glutelins, self-assembly and inter-glycinin interactions, resulting in the enrichment of globulin and glutelin fractions and a concomitant reduction of the prolamin fraction. Immunoelectron microscopy indicated that the synthesized A1aB1b glycinin was predominantly deposited in protein body-II (PB-II) storage vacuoles, whereas A3B4 glycinin is targeted to both PB-II and endoplasmic reticulum (ER)-derived protein body-I (PB-I) storage structures. Co-expression with A1aB1b facilitated targeting of A3B4 glycinin into PB-II by sequestration with A1aB1b, resulting in an increase in the accumulation of A3B4 glycinin.  相似文献   
62.

Background

Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)4-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4.

Methodology/Principal Findings

PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity.

Conclusions/Significance

Results showed that PLD4 is a non-PLD, HKD motif-carrying, transmembrane glycoprotein localized in the endoplasmic reticulum and Golgi apparatus. The spatiotemporally restricted expression patterns suggested that PLD4 might play a role in common function(s) among microglia during early postnatal brain development and splenic marginal zone cells.  相似文献   
63.
A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf 01 ) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.  相似文献   
64.
We have cloned the homoserine dehydrogenase genes (hom) from the gram-negative obligate methylotrophs Methylobacillus glycogenes ATCC 21276 and ATCC 21371 by complementation of an Escherichia coli homoserine dehydrogenase-deficient mutant. The 4.15-kb DNA fragment cloned from M. glycogenes ATCC 21371 also complemented an E. coli threonine synthase-deficient mutant, suggesting the DNA fragment contained the thrC gene in addition to the hom gene. The homoserine dehydrogenases expressed in the E. coli recombinants were hardly inhibited by L-threonine, L-phenylalanine, or L-methionine. However, they became sensitive to the amino acids after storage at 4 degrees C for 4 days as in M. glycogenes. The structures of the homoserine dehydrogenases overexpressed in E. coli were thought to be different from those in M. glycogenes, probably in subunit numbers of the enzyme, and were thought to have converted to the correct structures during the storage. The nucleotide sequences of the hom and thrC genes were determined. The hom genes of M. glycogenes ATCC 21276 and ATCC 21371 encode peptides with M(r)s of 48,225 and 44,815, respectively. The thrC genes were located 50 bp downstream of the hom genes. The thrC gene of ATCC 21371 encodes a peptide with an M(r) of 52,111, and the gene product of ATCC 21276 was truncated. Northern (RNA) blot analysis suggests that the hom and thrC genes are organized in an operon. Significant homology between the predicted amino acid sequences of the hom and thrC genes and those from other microorganisms was found.  相似文献   
65.
Metabolites of Taphrina wiesneri (Rath.) Mix. were examined. Brassicasterol, stearic acid, and p-hydroxyphenylacetic acid were isolated in crystalline form. p-Hydroxybenzoic acid and vanillic acid were identified by paper chromatography and UV measurement. Palmitic acid was identified by gas-chromatography. The fungus produced usually these compounds on any one of four kinds of medium used. p-Hydroxyphenylacetic acid promoted germination of rape seeds at the concentration of 20 ppm in water and showed inhibition at 250 ppm.

Phenolic acids and their related compounds in Japanese flowering cherry leaves infected by Taphrina wiesneri were examined. In the acidic and neutral extracts of infected cherry leaves (I), eighteen compounds positive to diazotized sulfanilic acid and two fluorescent compounds were detected by paper chromatography. Of these compounds, coumarin, 3, 4-dihydrocoumarin, melilotic acid, o- and p-coumaric acids, p-hydroxybenzoic melilotic acid, ferulic acid and caffeic acid were identified. Melilotic acid and coumarin were obtained in crystalline form. The amount of melilotic acid in I was higher than that in healthy leaves independent of sample source, although increased with the growth of cherry leaves.  相似文献   
66.
Androgen receptor (AR) signaling is the master regulator of prostate cell growth. Here, to better understand AR signaling, we searched for AR-interacting proteins by yeast two-hybrid screening and identified protein arginine methyltransferase 10 (PRMT10) as one of the interacting proteins. PRMT10 was highly expressed in reproductive tissues, such as prostate. Immunostaining showed that PRMT10 was expressed in the nucleus of both epithelia and stroma of rat prostate. In human prostate cancer LNCaP cells, PRMT10 co-immunoprecipitated with AR in both the presence and absence of dihydrotestosterone (DHT). Knockdown of PRMT10 by siRNA decreased DHT-dependent LNCaP cell growth and induction of prostate-specific antigen, an AR-target gene, without apparent loss of AR. DHT decreased PRMT10 at both the mRNA and protein levels. The decrease in PRMT10 was canceled by knockdown of AR or an AR antagonist. These results indicate that PRMT10 plays an important role in androgen-dependent proliferation of prostate cancer cells.  相似文献   
67.
Chimeric mice were prepared from embryonic stem cells transfected with IgH genes as transgenes and RAG-2-deficient blastocysts for the purpose of identifying the cis-acting elements responsible for the induction of somatic hypermutation. Among the three transgene constructs used, the V(H) promoter, the rearranged V(H)-D-J(H), an intron enhancer/matrix attachment region, and human Cmu were common to all, but the 3'-untranslated region in each construct was different. After immunization of mice with a T cell-dependent Ag, the distribution and frequency of hypermutation in transgenes were analyzed. The transgene lacking the 3' untranslated region showed a marginal degree of hypermutation. Addition of the 3' enhancer resulted in a slight increase in the number of mutations. However, the transgene containing DNase I-sensitive regions 3b and 4 in addition to the 3' enhancer showed more than a 10-fold increase in hypermutation, reaching levels comparable to those observed in endogenous V(H)186.2 genes of C57BL/6 mice.  相似文献   
68.
Two desiccation-sensitive mutants of Drosophila melanogaster were isolated. Genetic analysis showed that the phenotype is controlled by a recessive gene parched located in 1A1-8 of the X-chromosome. In a desiccated environment without any water supply, the survival time of the mutant flies was considerably shorter than that of the wild-type flies. The rate of water loss in the mutant flies was significantly higher than that of the wild-type flies, whether dead or alive. The survival time of the mosaic flies, which have the mutant and wild-type cuticle, was prolonged in proportion to the amount of wild-type cuticle which they possessed. These results suggest that the mutant has a defect in some waterproofing mechanism of the integument. The mutant flies drank much more water than the wild-type flies, to compensate for the rapid water loss. The hydrocarbons, which are the predominant constituent of cuticular lipids, were analyzed by gas-liquid chromatography, but there were no significant quantitative nor qualitative differences between the wild-type and the mutant flies.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号