首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   17篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   11篇
  2016年   7篇
  2015年   14篇
  2014年   9篇
  2013年   17篇
  2012年   17篇
  2011年   20篇
  2010年   7篇
  2009年   8篇
  2008年   10篇
  2007年   15篇
  2006年   8篇
  2005年   8篇
  2004年   10篇
  2003年   10篇
  2002年   9篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   7篇
  1994年   6篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有226条查询结果,搜索用时 15 毫秒
151.
Virus-induced alterations in cell morphology play important roles in the viral life cycle. To examine the intracellular events of coxsackievirus B3 (CVB3) infection, green monkey kidney (GMK) cells were either inoculated with the virus or transfected with the viral RNA. Various microscopic and flow cytometric approaches demonstrated the emergence of CVB3 capsid proteins at 8 h posttransfection, followed by morphological transformation of the cells. The morphological changes included formation of membranous protrusions containing viral capsids, together with microtubules and actin. Translocation of viral capsids into these protrusions was sensitive to cytochalasin D, suggesting the importance of actin in the process. Three-dimensional (3D) live-cell imaging demonstrated frequent contacts between cellular protrusions and adjacent cells. Markedly, in spite of an increase in the cellular viral protein content starting 8 h postinfection, no significant decrease in cell viability or increase in the amount of early apoptotic markers was observed by flow cytometry by 28 h postinfection. Comicroinjection of viral RNA and fluorescent dextran in the presence of neutralizing virus antibody suggested that these protrusions mediated the spread of infection from one cell to another prior to virus-induced cell lysis. Altogether, the CVB3-induced cellular protrusions could function as a hitherto-unknown nonlytic mechanism of cell-to-cell transmission exploited by enteroviruses.  相似文献   
152.
Efficient water transport from the soil to the leaves is essential for plant function, while building and maintaining the water transport structure in the xylem require a major proportion of the assimilated carbon of the tree. Xylem transport also faces additional challenges as water in the xylem is under tension and therefore cavitation cannot be completely avoided. We constructed a model that calculates the xylem structure that maximizes carbon-use efficiency while simultaneously taking into account pit structure in increasing the resistance to water transport and constricting the spreading of embolisms. The optimal xylem structure predicted by the model was found to correspond well to the generally observed trends: xylem conduits grew in size from the apex towards the base while simultaneously decreasing in number, and vulnerability to cavitation increased with conduit size. These trends were caused primarily by the axial water potential gradient in the xylem. The pits have to be less porous near the apex where water potential is lower to restrict the spreading of embolisms, while whole-plant carbon-use efficiency demands that conduit size decreases and conduit number increases simultaneously. The model predictions remained qualitatively the same regardless of the exact optimality criterion used for defining carbon-use efficiency.  相似文献   
153.
A manganese superoxide dismutase from the thermophilic fungus Chaetomium thermophilum (CtMnSOD) was expressed in Pichia pastoris and purified to homogeneity. Its optimal temperature was 60 °C with approximately 75% of its activity retained after incubation at 70 °C for 60 min. Recombinant yeast cells carrying C. thermophilum mnsod gene exhibited higher stress resistance to salt and oxidative stress-inducing agents than control yeast cells. In an effort to provide structural insights, CtMnSOD was crystallized and its structure was determined at 2.0 Å resolution. The overall architecture of CtMnSOD was found similar to other MnSODs with highest structural similarities obtained against a MnSOD from the thermotolerant fungus Aspergillus fumigatus. In order to explain its thermostability, structural and sequence analysis of CtMnSOD with other MnSODs was carried out. An increased number of charged residues and an increase in the number of intersubunit salt bridges and the Thr:Ser ratio were identified as potential reasons for the thermostability of CtMnSOD.  相似文献   
154.
Northern mires (fens and bogs) have significant climate feedbacks and contribute to biodiversity, providing habitats to specialized biota. Many studies have found drying and degradation of bogs in response to climate change, while northern fens have received less attention. Rich fens are particularly important to biodiversity, but subject to global climate change, fen ecosystems may change via direct response of vegetation or indirectly by hydrological changes. With repeated sampling over the past 20 years, we aim to reveal trends in hydrology and vegetation in a pristine boreal fen with gradient from rich to poor fen and bog vegetation. We resampled 203 semi‐permanent plots and compared water‐table depth (WTD), pH, concentrations of mineral elements, and dissolved organic carbon (DOC), plant species occurrences, community structure, and vegetation types between 1998 and 2018. In the study area, the annual mean temperature rose by 1.0°C and precipitation by 46 mm, in 20‐year periods prior to sampling occasions. We found that wet fen vegetation decreased, while bog and poor fen vegetation increased significantly. This reflected a trend of increasing abundance of common, generalist hummock species at the expense of fen specialist species. Changes were the most pronounced in high pH plots, where Sphagnum mosses had significantly increased in plot frequency, cover, and species richness. Changes of water chemistry were mainly insignificant in concentration levels and spatial patterns. Although indications toward drier conditions were found in vegetation, WTD had not consistently increased, instead, our results revealed complex dynamics of WTD as depending on vegetation changes. Overall, we found significant trend in vegetation, conforming to common succession pattern from rich to poor fen and bog vegetation. Our results suggest that responses intrinsic to vegetation, such as increased productivity or altered species interactions, may be more significant than indirect effects via local hydrology to the ecosystem response to climate warming.  相似文献   
155.
156.

Background and Aims

The family of MADS box genes is involved in a number of processes besides controlling floral development. In addition to supplying homeotic functions defined by the ABC model, they influence flowering time and transformation of vegetative meristem into inflorescence meristem, and have functions in roots and leaves. Three Gerbera hybrida At-SOC1-like genes (Gh-SOC1–Gh-SOC3) were identified among gerbera expressed sequence tags.

Methods

Evolutionary relationships between SOC1-like genes from gerbera and other plants were studied by phylogenetic analysis. The function of the gerbera gene Gh-SOC1 in gerbera floral development was studied using expression analysis, protein–protein interaction assays and reverse genetics. Transgenic gerbera lines over-expressing or downregulated for Gh-SOC1 were obtained using Agrobacterium transformation and investigated for their floral phenotype.

Key Results

Phylogenetic analysis revealed that the closest paralogues of At-SOC1 are Gh-SOC2 and Gh-SOC3. Gh-SOC1 is a more distantly related paralogue, grouping together with a number of other At-SOC1 paralogues from arabidopsis and other plant species. Gh-SOC1 is inflorescence abundant and no expression was seen in vegetative parts of the plant. Ectopic expression of Gh-SOC1 did not promote flowering, but disturbed the development of floral organs. The epidermal cells of ray flower petals appeared shorter and their shape was altered. The colour of ray flower petals differed from that of the wild-type petals by being darker red on the adaxial side and greenish on the abaxial surface. Several protein–protein interactions with other gerbera MADS domain proteins were identified.

Conclusions

The At-SOC1 paralogue in gerbera shows a floral abundant expression pattern. A late petal expression might indicate a role in the final stages of flower development. Over-expression of Gh-SOC1 led to partial loss of floral identity, but did not affect flowering time. Lines where Gh-SOC1 was downregulated did not show a phenotype. Several gerbera MADS domain proteins interacted with Gh-SOC1.  相似文献   
157.
Virus-induced gene silencing (VIGS) is a natural defence mechanism in plants which leads to sequence-specific degradation of viral RNA. For identifying gene functions, Tobacco rattle virus (TRV)-based VIGS has been applied for silencing of endogenous genes in many plant species. Gerbera hybrida (Asteraceae) has emerged as a novel model for studies in flower development and secondary metabolism. For this highly heterozygous species, functional studies have been conducted through reverse genetic methods by producing stable transgenic lines, which, however, is labour-intensive and time-consuming. For the development of TRV-based VIGS system for gerbera, and for the first time for an Asteraceaeous species, we screened several gerbera cultivars and optimized the agroinfiltration methods for efficient silencing. Gene fragments for gerbera phytoene desaturase (GPDS) and Mg-chelatase subunits (GChl-H and GChl-I), expressed from a TRV vector, induced silencing phenotypes in leaves, scapes, and involucral bracts indicating their feasibility as markers for green tissues. In addition, robust silencing symptoms were achieved in gerbera floral tissues by silencing the anthocyanin pathway gene for chalcone synthase (GCHS1) and a gerbera B-type MADS-box gene globosa (GGLO1), confirming the phenotypes previously observed in stable transgenic lines. Unexpectedly, photobleaching induced by GPDS and GChl-H or GChl-I silencing, or by the herbicide norflurazon, resulted in silencing of the polyketide synthase gene G2PS1, which has no apparent connections to carotenoid or chlorophyll biosynthesis. We have shown feasibility of VIGS for functional studies in gerbera, but our results also show that selection of the marker gene for silencing must be critically evaluated.  相似文献   
158.

Background

Many investigators have recognised that a significant proportion of environmental bacteria exist in a viable but non-culturable state on agar plates, and some researchers have also noticed that some of such bacteria clearly recover their growth on matrices other than agar. However, the reason why agar is unsuitable for the growth of some bacteria has not been addressed.

Methodology/Principal Findings

According to the guide of a bioassay for swarming inhibition, we identified 5-hydroxymethylfuran-2-carboxylic acid (5-HMFA) and furan-2-carboxylic acid (FA) as factors that inhibit bacterial swarming and likely inhibit extracellular polysaccharide production on agar. The furan-2-carboxylic acids 5-HMFA and FA effectively inhibited the swarming and swimming of several environmental bacteria at concentrations of 1.8 and 2.3 µg L−1 (13 and 21 nmol L−1), respectively, which are equivalent to the concentrations of these compounds in 0.3% agar. On Luria-Bertani (LB) plates containing 1.0% agar that had been previously washed with MeOH, a mixture of 5-HMFA and FA in amounts equivalent to their original concentrations in the unwashed agar repressed the swarming of Escherichia coli K12 strain W3110, a representative swarming bacterium.

Conclusions/Significance

Agar that contains trace amounts of 5-HMFA and FA inhibits the proliferation of some slow-growing or difficult-to-culture bacteria on the plates, but it is useful for single colony isolation due to the ease of identification of swarmable bacteria as the non-swarmed colonies.  相似文献   
159.
Cavitation decreases the hydraulic conductance of the xylem and has, therefore, detrimental effects on plant water balance. However, cavitation is also hypothesized to relieve water stress temporarily by releasing water from embolizing conduits to the transpiration stream. Stomatal closure in response to decreasing water potentials in order to avoid excessive cavitation has been well documented in numerous previous studies. However, it has remained unclear whether the stomata sense cavitation events themselves or whether they act in response to a decrease in leaf water potential to a level at which cavitation is initiated. The effects of massive cavitation on leaf water potential, transpiration, and stomatal behaviour were studied by feeding a surfactant into the transpiration stream of Scots pine (Pinus sylvestris) seedlings. The stomatal response to cavitation in connection with the capacitive effect was also studied. A major transient increase in leaf water potential was found due to cavitation in the seedlings. As cavitation was induced by lowering the surface tension, the two mechanisms could be uncoupled, as the usual relation between xylem water potential and the onset of cavitation did not hold. Our results indicate that the seedlings responded more to leaf water potential and less to cavitation itself, as stomatal closure was insufficient to prevent the seedlings from being driven to 'run-away' cavitation in a manner of hours.  相似文献   
160.
Tetracycline and beta-lactam resistances among others are used as selection markers in the production of recombinant proteins. The beta-lactam resistance is based on degradation, i.e. the selection pressure gradually disappears from the culture, whereas tetracycline resistance is based on active efflux. We have studied the kinetics of the stability of antibiotic selection pressure in culture using a simple model system (pBR322 in Escherichia coli). Concentrations of ampicillin, carbenicillin and tetracycline were measured with novel sensor cells developed in our lab. These cells are specifically induced to produce light in the presence of the drugs and here their performance was shown to be excellent in monitoring antibiotic concentrations in cell culture. The sensor cells are cheap to produce and use and a high number of samples can be analysed simultaneously. To our surprise, ampicillin and carbenicillin were completely degraded after 2.5-3.0 h of culture, although it has been widely claimed that especially carbenicillin is a good selective agent, whereas tetracycline was stable in culture. beta-lactamase activity in culture was found to correlate with the kinetics of ampicillin degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号