首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   17篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   10篇
  2016年   7篇
  2015年   13篇
  2014年   10篇
  2013年   16篇
  2012年   19篇
  2011年   20篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   16篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   9篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   7篇
  1994年   5篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
141.
Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N1-acetyltransferase (SSAT) have significantly reduced plasma total cholesterol levels. In our study, we show that low cholesterol levels were attributable to enhanced bile acid synthesis in combination with reduced cholesterol absorption. Hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme catalyzing the conversion of cholesterol to bile acids, plays an important role in the removal of excess cholesterol from the body. We suggest that by reducing activity of Akt activated polyamine catabolism increased the stability and activity of peroxisome proliferator-activated receptor γ co-activator 1α, the critical activator of CYP7A1. This is supported by our finding that the treatment with SSAT activator, N 1,N 11-diethylnorspermine, reduced significantly the amount of phosphorylated (active) Akt in HepG2 cells. In summary, activated-polyamine catabolism is a novel mechanism to regulate bile acid synthesis. Therefore, polyamine catabolism could be a potential therapeutic target to control hepatic CYP7A1 expression.  相似文献   
142.
143.
144.
Murtola T  Vattulainen I  Falck E 《Proteins》2008,71(4):1995-2011
Tryptophan biosynthesis in Bacillus stearothermophilus is regulated by a trp RNA binding attenuation protein (TRAP). It is a ring-shaped 11-mer of identical 74 residue subunits. Tryptophan binding pockets are located between adjacent subunits, and tryptophan binding activates TRAP to bind RNA. Here, we report results from all-atom molecular dynamics simulations of the system, complementing existing extensive experimental studies. We focus on two questions. First, we look at the activation mechanism, of which relatively little is known experimentally. We find that the absence of tryptophan allows larger motions close to the tryptophan binding site, and we see indication of a conformational change in the BC loop. However, complete deactivation seems to occur on much longer time scales than the 40 ns studied here. Second, we study the TRAP-RNA interactions. We look at the relative flexibilities of the different bases in the complex and analyze the hydrogen bonds between the protein and RNA. We also study the role of Lys37, Lys56, and Arg58, which have been experimentally identified as essential for RNA binding. Hydrophobic stacking of Lys37 with the nearby RNA base is confirmed, but we do not see direct hydrogen bonding between RNA and the other two residues, in contrast to the crystal structure. Rather, these residues seem to stabilize the RNA-binding surface, and their positive charge may also play a role in RNA binding. Simulations also indicate that TRAP is able to attract RNA nonspecifically, and the interactions are quantified in more detail using binding energy calculations. The formation of the final binding complex is a very slow process: within the simulation time scale of 40 ns, only two guanine bases become bound (and no others), indicating that the binding initiates at these positions. In general, our results are in good agreement with experimental studies, and provide atomic-scale insights into the processes.  相似文献   
145.
Kivioja T  Tiirikka T  Siermala M  Vihinen M 《Gene》2008,410(1):53-66
Gene and protein expression is controlled so that cells can react to changing intra- and extracellular signals by modulating biochemical networks and pathways. We have previously shown that gene expression and the properties of expressed proteins are dynamically correlated. Here we investigated correlations between gene related parameters and gene expression patterns, and found statistically significant correlations in microarray datasets for different cell types, organisms and processes, including human B and T cell stimulation, cell cycle in HeLa cells, infection in intestinal epithelial cells, Drosophila melanogaster life span, and Saccharomyces cerevisiae cell cycle. Our method was applied to time course datasets individually for each time point. We derived from sequence information numerous parameters for nucleotide composition, two-base composition, codon usage, skew parameters, and codon bias. In addition to coding regions, we also investigated correlations for complete genes and introns. Significant dynamic correlations were identified for each of the analyses. Our method also proved useful for detecting dynamic shifts in gene expression profiles, such as in the D. melanogaster dataset. Detection of changes in the properties of expressed genes and proteins might be useful for predicting or following biological processes, responses, growth, differentiation and possibly in related disorders.  相似文献   
146.
147.
For nearly 20 years, looking at the tangent point on the road edge has been prominent in models of visual orientation in curve driving. It is the most common interpretation of the commonly observed pattern of car drivers looking through a bend, or at the apex of the curve. Indeed, in the visual science literature, visual orientation towards the inside of a bend has become known as “tangent point orientation”. Yet, it remains to be empirically established whether it is the tangent point the drivers are looking at, or whether some other reference point on the road surface, or several reference points, are being targeted in addition to, or instead of, the tangent point. Recently discovered optokinetic pursuit eye-movements during curve driving can provide complementary evidence over and above traditional gaze-position measures. This paper presents the first detailed quantitative analysis of pursuit eye movements elicited by curvilinear optic flow in real driving. The data implicates the far zone beyond the tangent point as an important gaze target area during steady-state cornering. This is in line with the future path steering models, but difficult to reconcile with any pure tangent point steering model. We conclude that the tangent point steering models do not provide a general explanation of eye movement and steering during a curve driving sequence and cannot be considered uncritically as the default interpretation when the gaze position distribution is observed to be situated in the region of the curve apex.  相似文献   
148.
Virus-induced alterations in cell morphology play important roles in the viral life cycle. To examine the intracellular events of coxsackievirus B3 (CVB3) infection, green monkey kidney (GMK) cells were either inoculated with the virus or transfected with the viral RNA. Various microscopic and flow cytometric approaches demonstrated the emergence of CVB3 capsid proteins at 8 h posttransfection, followed by morphological transformation of the cells. The morphological changes included formation of membranous protrusions containing viral capsids, together with microtubules and actin. Translocation of viral capsids into these protrusions was sensitive to cytochalasin D, suggesting the importance of actin in the process. Three-dimensional (3D) live-cell imaging demonstrated frequent contacts between cellular protrusions and adjacent cells. Markedly, in spite of an increase in the cellular viral protein content starting 8 h postinfection, no significant decrease in cell viability or increase in the amount of early apoptotic markers was observed by flow cytometry by 28 h postinfection. Comicroinjection of viral RNA and fluorescent dextran in the presence of neutralizing virus antibody suggested that these protrusions mediated the spread of infection from one cell to another prior to virus-induced cell lysis. Altogether, the CVB3-induced cellular protrusions could function as a hitherto-unknown nonlytic mechanism of cell-to-cell transmission exploited by enteroviruses.  相似文献   
149.
Efficient water transport from the soil to the leaves is essential for plant function, while building and maintaining the water transport structure in the xylem require a major proportion of the assimilated carbon of the tree. Xylem transport also faces additional challenges as water in the xylem is under tension and therefore cavitation cannot be completely avoided. We constructed a model that calculates the xylem structure that maximizes carbon-use efficiency while simultaneously taking into account pit structure in increasing the resistance to water transport and constricting the spreading of embolisms. The optimal xylem structure predicted by the model was found to correspond well to the generally observed trends: xylem conduits grew in size from the apex towards the base while simultaneously decreasing in number, and vulnerability to cavitation increased with conduit size. These trends were caused primarily by the axial water potential gradient in the xylem. The pits have to be less porous near the apex where water potential is lower to restrict the spreading of embolisms, while whole-plant carbon-use efficiency demands that conduit size decreases and conduit number increases simultaneously. The model predictions remained qualitatively the same regardless of the exact optimality criterion used for defining carbon-use efficiency.  相似文献   
150.
A manganese superoxide dismutase from the thermophilic fungus Chaetomium thermophilum (CtMnSOD) was expressed in Pichia pastoris and purified to homogeneity. Its optimal temperature was 60 °C with approximately 75% of its activity retained after incubation at 70 °C for 60 min. Recombinant yeast cells carrying C. thermophilum mnsod gene exhibited higher stress resistance to salt and oxidative stress-inducing agents than control yeast cells. In an effort to provide structural insights, CtMnSOD was crystallized and its structure was determined at 2.0 Å resolution. The overall architecture of CtMnSOD was found similar to other MnSODs with highest structural similarities obtained against a MnSOD from the thermotolerant fungus Aspergillus fumigatus. In order to explain its thermostability, structural and sequence analysis of CtMnSOD with other MnSODs was carried out. An increased number of charged residues and an increase in the number of intersubunit salt bridges and the Thr:Ser ratio were identified as potential reasons for the thermostability of CtMnSOD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号