首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   10篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2018年   1篇
  2017年   4篇
  2016年   10篇
  2015年   9篇
  2014年   9篇
  2013年   20篇
  2012年   27篇
  2011年   19篇
  2010年   12篇
  2009年   9篇
  2008年   11篇
  2007年   19篇
  2006年   10篇
  2005年   10篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
31.
The 17β-HSD (17β-hydroxysteroid dehydrogenase) from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) is a NADP(H)-dependent enzyme that preferentially catalyses the interconversion of inactive 17-oxo-steroids and their active 17β-hydroxy counterparts. 17β-HSDcl belongs to the SDR (short-chain dehydrogenase/reductase) superfamily. It is currently the only fungal 17β-HSD member that has been described and represents one of the model enzymes of the cP1 classical subfamily of NADPH-dependent SDR enzymes. A thorough crystallographic analysis has been performed to better understand the structural aspects of this subfamily and provide insights into the evolution of the HSD enzymes. The crystal structures of the 17β-HSDcl apo, holo and coumestrol-inhibited ternary complex, and the active-site Y167F mutant reveal subtle conformational differences in the substrate-binding loop that probably modulate the catalytic activity of 17β-HSDcl. Coumestrol, a plant-derived non-steroidal compound with oestrogenic activity, inhibits 17β-HSDcl [IC50 2.8?μM; at 100?μM substrate (4-oestrene-3,17-dione)] by occupying the putative steroid-binding site. In addition to an extensive hydrogen-bonding network, coumestrol binding is stabilized further by π-π stacking interactions with Tyr212. A stopped-flow kinetic experiment clearly showed the coenzyme dissociation as the slowest step of the reaction and, in addition to the low steroid solubility, it prevents the accumulation of enzyme-coenzyme-steroid ternary complexes.  相似文献   
32.
Mitsuaria sp. strain H24L5A is a plant-associated bacterium with proven capacities to suppress plant pathogens. Here, we report the draft genome sequences and automatic annotation of H24L5A. Comparative genomic analysis indicates H24L5A's similarity to the Leptothrix and Methylibium species, as well as several genes potentially contributing to its biocontrol activities.  相似文献   
33.
34.
Fungal species are a very important source of many different enzymes, and the ability of fungi to transform steroids has been used for several decades in the production of compounds with a sterane skeleton. Here, we review the characterised and/or purified enzymes for steroid transformations, dividing them into two groups: (i) enzymes of the ergosterol biosynthetic pathway, including data for, e.g. ERG11 (14α-demethylase), ERG6 (C-24 methyltransferase), ERG5 (C-22 desaturase) and ERG4 (C-24 reductase); and (ii) the other steroid-transforming enzymes, including different hydroxylases (7α-, 11α-, 11β-, 14α-hydroxylase), oxidoreductases (5α-reductase, 3β-hydroxysteroid dehydrogenase/isomerase, 17β-hydroxysteroid dehydrogenase, C-1/C-2 dehydrogenase) and C-17-C-20 lyase. The substrate specificities of these enzymes, their cellular localisation, their association with protein super-families, and their potential applications are discussed. Article from a special issue on steroids and microorganisms.  相似文献   
35.
The human aldo-keto reductase AKR1C2 converts 5α-dihydrotestosterone to the less active 3α-androstanediol and has a minor 20-ketosteroid reductase activity that metabolises progesterone to 20α-hydroxyprogesterone. AKR1C2 is expressed in different peripheral tissues, but its role in uterine diseases like endometriosis has not been studied in detail. Some progestins used for treatment of endometriosis inhibit AKR1C1 and AKR1C3, with unknown effects on AKR1C2. In this study we investigated expression of AKR1C2 in the model cell lines of peritoneal endometriosis, and examined the ability of recombinant AKR1C2 to metabolise progesterone and progestin dydrogesterone, as well as its potential inhibition by progestins. AKR1C2 is expressed in epithelial and stromal endometriotic cell lines at the mRNA level. The recombinant enzyme catalyses reduction of progesterone to 20α-hydroxyprogesterone with a 10-fold lower catalytic efficiency than the major 20-ketosteroid reductase, AKR1C1. AKR1C2 also metabolises progestin dydrogesterone to its 20α-dihydrodydrogesterone, with 8.6-fold higher catalytic efficiency than 5α-dihydrotestosterone. Among the progestins that are currently used for treatment of endometriosis, dydrogesterone, medroxyprogesterone acetate and 20α-dihydrodydrogesterone act as AKR1C2 inhibitors with low μM K(i) values in vitro. Their potential in vivo effects should be further studied.  相似文献   
36.
Human aldo-keto reductases AKR1C1-AKR1C3 are involved in the biosynthesis and inactivation of steroid hormones and prostaglandins and thus represent attractive targets for the development of new drugs. We synthesized a series of N-benzoyl anthranilic acid derivatives and tested their inhibitory activity on AKR1C enzymes. Our data show that these derivatives inhibit AKR1C1-AKR1C3 isoforms with low micromolar potency. In addition, five selective inhibitors of AKR1C3 were identified. The most promising inhibitors were compounds 10 and 13, with IC(50) values of 0.31μM and 0.35μM for AKR1C3, respectively.  相似文献   
37.
At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. We studied several growth and functional traits of hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in response to elevated atmospheric humidity (on average 7% over the ambient level) in a free air experimental facility during three growing seasons (2008-2010) in Estonia, which represents northern temperate climate (boreo-nemoral zone). Data were collected from three humidified (H) and three control (C) plots, and analysed using nested linear models. Elevated air humidity significantly reduced height, stem diameter and stem volume increments and transpiration of the trees whereas these effects remained highly significant also after considering the side effects from soil-related confounders within the 2.7 ha study area. Tree leaves were smaller, lighter and had lower leaf mass per area (LMA) in H plots. The magnitude and significance of the humidity treatment effect - inhibition of above-ground growth rate - was more pronounced in larger trees. The lower growth rate in the humidified plots can be partly explained by a decrease in transpiration-driven mass flow of NO(3) (-) in soil, resulting in a significant reduction in the measured uptake of N to foliage in the H plots. The results suggest that the potential growth improvement of fast-growing trees like aspens, due to increasing temperature and atmospheric CO(2) concentration, might be smaller than expected at high latitudes if a rise in atmospheric humidity simultaneously takes place.  相似文献   
38.
A perivascular origin for mesenchymal stem cells in multiple human organs   总被引:4,自引:0,他引:4  
Mesenchymal stem cells (MSCs), the archetypal multipotent progenitor cells derived in cultures of developed organs, are of unknown identity and native distribution. We have prospectively identified perivascular cells, principally pericytes, in multiple human organs including skeletal muscle, pancreas, adipose tissue, and placenta, on CD146, NG2, and PDGF-Rbeta expression and absence of hematopoietic, endothelial, and myogenic cell markers. Perivascular cells purified from skeletal muscle or nonmuscle tissues were myogenic in culture and in vivo. Irrespective of their tissue origin, long-term cultured perivascular cells retained myogenicity; exhibited at the clonal level osteogenic, chondrogenic, and adipogenic potentials; expressed MSC markers; and migrated in a culture model of chemotaxis. Expression of MSC markers was also detected at the surface of native, noncultured perivascular cells. Thus, blood vessel walls harbor a reserve of progenitor cells that may be integral to the origin of the elusive MSCs and other related adult stem cells.  相似文献   
39.
40.
The LKB1 tumor suppressor kinase in human disease   总被引:1,自引:0,他引:1  
Inactivating germline mutations in the LKB1 gene underlie Peutz-Jeghers syndrome characterized by hamartomatous polyps and an elevated risk for cancer. Recent studies suggest the involvement of LKB1 also in more common human disorders including diabetes and in a significant fraction of lung adenocarcinomas. These observations have increased the interest towards signaling pathways of this tumor suppressor kinase. The recent breakthroughs in understanding the molecular functions of the LKB1 indicate its contribution as a regulator of cell polarity, energy metabolism and cell proliferation. Here we review how the substrates and cellular functions of LKB1 may be linked to Peutz-Jeghers syndrome and other diseases, and discuss how some of the molecular changes associated with altered LKB1 signaling might be used in therapeutic approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号