首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   7篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2018年   1篇
  2017年   3篇
  2016年   10篇
  2015年   9篇
  2014年   9篇
  2013年   20篇
  2012年   27篇
  2011年   20篇
  2010年   12篇
  2009年   9篇
  2008年   11篇
  2007年   18篇
  2006年   10篇
  2005年   10篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有219条查询结果,搜索用时 46 毫秒
141.
142.
Background: Recently published research demonstrated direct renoprotective effects of the glucagon-like peptide-1 receptor agonist GLP 1 RA, but the relevant molecular mechanisms are still not clear. The aim of this research was to assess the effects of Liraglutide in a cell culture model of diabetic nephropathy on cell viability, antioxidant (GSH) and transforming growth factor beta 1 (TGF- β1) levels and extracellular matrix (ECM) expression. The metabolic activity in hyperglycemic conditions and the effect of Liraglutide treatment were assessed by measuring Akt, pAkt, GSK3β, pGSK3β, pSTAT3, SOCS3, iNOS and NOX4 protein expression with Western blot. F actin distribution was used to assess the structural changes of the cells upon treatment. Materials and methods: The cells were exposed to high glucose (HG30 mM) followed by 0.5 mM H2O2 and a combination of glucose and H2O2 during 24 h. Subsequently, the cells were treated with different combinations of HG30, H2O2 and Liraglutide. Cell viability was determined by an MTT colorimetric test, and the GSH, TGF-β1 concentration and ECM expression were measured using a spectrophotometric/microplate reader assay and an ELISA kit, respectively. Western blotting was used to detect the protein level of Akt, pAkt, GSK3β, pGSK3β, pSTAT3, SOCS3, iNOS and NOX4. The F-actin cytoskeleton was visualized with Phalloidin stain and subsequently quantified. Results: Cell viability was decreased as well as GSH levels in cells treated with a combination of HG30/H2O2, and HG30 alone (p < 0.001). The addition of Liraglutide improved the viability in cells treated with HG30, but it did not affect the cell viability in the cell treated with the addition of H2O2. GSH increased with the addition of Liraglutide in HG30/H2O2 (p < 0.001) treated cells, with no effect in cells treated only with HG30. TGF-β1 levels (p < 0.001) were significantly increased in HG30 and HG30/H2O2. The addition of Liraglutide significantly decreased the TGF-β1 levels (p < 0.01; p < 0.05) in all treated cells. The synthesis of collagen was significantly increased in HG30/H2O2 (p < 0.001), while the addition of Liraglutide in HG30/H2O2 significantly decreased collagen (p < 0.001). Akt signaling was not significantly affected by treatment. The GSK3b and NOX4 levels were significantly reduced (p < 0.01) after the peroxide and glucose treatment, with the observable restoration upon the addition of Liraglutide suggesting an important role of Liraglutide in oxidative status regulation and mitochondrial activity. The treatment with Liraglutide significantly upregulated STAT3 (p < 0.01) activity, with no change in SOCS3 indicating a selective regulation of the STAT 3 signaling pathway in glucose and the oxidative overloaded environment. A significant reduction in the distribution of F-actin was observed in cells treated with HG30/H2O2 (p < 0.01). The addition of Liraglutide to HG30-treated cells led to a significant decrease of distribution of F-actin (p < 0.001). Conclusion: The protective effect of Liraglutide is mediated through the inhibition of TGF beta, but this effect is dependent on the extent of cellular damage and the type of toxic environment. Based on the WB analysis we have revealed the signaling pathways involved in cytoprotective and cytotoxic effects of the drug itself, and further molecular studies in vitro and vivo are required to elucidate the complexity of the pathophysiological mechanisms of Liraglutide under conditions of hyperglycemia and oxidative stress.  相似文献   
143.
Studies of the relationship between serum 25-hydroxyvitamin D (25(OH)D) and changes in measures of adiposity have shown inconsistent results, and interaction with genetic predisposition to obesity has rarely been examined. We examined whether 25(OH)D was associated with subsequent annual changes in body weight (ΔBW) or waist circumference (ΔWC), and whether the associations were modified by genetic predisposition to a high BMI, WC or waist-hip ratio adjusted for BMI (WHRBMI). The study was based on 10,898 individuals from the Danish Inter99, the 1958 British Birth Cohort and the Northern Finland Birth Cohort 1966. We combined 42 adiposity-associated Single Nucleotide Polymorphisms (SNPs) into four scores indicating genetic predisposition to BMI, WC and WHRBMI, or all three traits combined. Linear regression was used to examine the association between serum 25(OH)D and ΔBW or ΔWC, SNP-score × 25(OH)D interactions were examined, and results from the individual cohorts were meta-analyzed. In the meta-analyses, we found no evidence of an association between 25(OH)D and ΔBW (-9.4 gram/y per 10 nmol/L higher 25(OH)D [95% CI: -23.0, +4.3; P = 0.18]) or ΔWC (-0.06 mm/y per 10 nmol/L higher 25(OH)D [95% CI: -0.17, +0.06; P = 0.33]). Furthermore, we found no statistically significant interactions between the four SNP-scores and 25(OH)D in relation to ΔBW or ΔWC. Thus, in view of the narrow CIs, our results suggest that an association between 25(OH)D and changes in measures of adiposity is absent or marginal. Similarly, the study provided evidence that there is either no or very limited dependence on genetic predisposition to adiposity.  相似文献   
144.
145.
Three components of the steroid hormone signalling system, 17β-hydroxysteroid dehydrogenase, androgen binding proteins and steroid hormone signalling molecule testosterone were determined in the filamentous fungus Cochliobolus lunatus for the first time in a fungus. Their possible role in C. lunatus is discussed in comparison with their role in mammalian steroid hormone signalling system. The results are in accordance with the hypothesis, that the elements of the primordial signal transduction system should exist in present day eukaryotic microorganisms.  相似文献   
146.
Despite their favorable pharmacokinetic properties, single-chain Fv antibody fragments (scFvs) are not commonly used as therapeutics, mainly due to generally low stabilities and poor production yields. In this work, we describe the identification and optimization of a human scFv scaffold, termed FW1.4, which is suitable for humanization and stabilization of a broad variety of rabbit antibody variable domains. A motif consisting of five structurally relevant framework residues that are highly conserved in rabbit variable domains was introduced into FW1.4 to generate a generically applicable scFv scaffold, termed FW1.4gen. Grafting of complementarity determining regions (CDRs) from 15 different rabbit monoclonal antibodies onto FW1.4 and their derivatives resulted in humanized scFvs with binding affinities in the range from 4.7 × 10−9 to 1.5 × 10−11 m. Interestingly, minimalistic grafting of CDRs onto FW1.4gen, without any substitutions in the framework regions, resulted in affinities ranging from 5.7 × 10−10 to <1.8 × 10−12 m. When compared with progenitor rabbit scFvs, affinities of most humanized scFvs were similar. Moreover, in contrast to progenitor scFvs, which were difficult to produce, biophysical properties of the humanized scFvs were significantly improved, as exemplified by generally good production yields in a generic refolding process and by apparent melting temperatures between 53 and 86 °C. Thus, minimalistic grafting of rabbit CDRs on the FW1.4gen scaffold presents a simple and reproducible approach to humanize and stabilize rabbit variable domains.  相似文献   
147.
Serine proteinases, like trypsin, can play a hormone-like role by triggering signal transduction pathways in target cells. In many respects these hormone-like actions of proteinases can now be understood in terms of the pharmacodynamics of the G protein-coupled 'receptor' responsible for the cellular actions of thrombin (proteinase-activated receptor-1, or PAR1). PAR1, like the other three members of this receptor family (PAR2, PAR3 and PAR4), has a unique mechanism of activation involving the proteolytic unmasking of an N-terminally tethered sequence that can activate the receptor. The selective activation of each PAR by short synthetic peptides representing these sequences has demonstrated that PAR1, PAR2 and PAR4 play important roles in regulating physiological responses ranging from vasoregulation and cell growth to inflammation and nociception. We hypothesise that the tissue kallikreins may regulate signal transduction via the PARs. Although PARs can account for many of their biological actions, kallikreins may also cause effects by mechanisms not involving the PARs. For instance, trypsin activates the insulin receptor and thrombin can act via a mechanism involving its non-catalytic domains. Based on the data we summarise, we propose that the kallikreins, like thrombin and trypsin, must now be considered as important 'hormonal' regulators of tissue function.  相似文献   
148.
149.
Serine proteinases like thrombin can signal to cells by the cleavage/activation of proteinase-activated receptors (PARs). Although thrombin is a recognized physiological activator of PAR(1) and PAR(4), the endogenous enzymes responsible for activating PAR(2) in settings other than the gastrointestinal system, where trypsin can activate PAR(2), are unknown. We tested the hypothesis that the human tissue kallikrein (hK) family of proteinases regulates PAR signaling by using the following: 1) a high pressure liquid chromatography (HPLC)-mass spectral analysis of the cleavage products yielded upon incubation of hK5, -6, and -14 with synthetic PAR N-terminal peptide sequences representing the cleavage/activation motifs of PAR(1), PAR(2), and PAR(4); 2) PAR-dependent calcium signaling responses in cells expressing PAR(1), PAR(2), and PAR(4) and in human platelets; 3) a vascular ring vasorelaxation assay; and 4) a PAR(4)-dependent rat and human platelet aggregation assay. We found that hK5, -6, and -14 all yielded PAR peptide cleavage sequences consistent with either receptor activation or inactivation/disarming. Furthermore, hK14 was able to activate PAR(1), PAR(2), and PAR(4) and to disarm/inhibit PAR(1). Although hK5 and -6 were also able to activate PAR(2), they failed to cause PAR(4)-dependent aggregation of rat and human platelets, although hK14 did. Furthermore, the relative potencies and maximum effects of hK14 and -6 to activate PAR(2)-mediated calcium signaling differed. Our data indicate that in physiological settings, hKs may represent important endogenous regulators of the PARs and that different hKs can have differential actions on PAR(1), PAR(2), and PAR(4).  相似文献   
150.
Inactivation of the tumor suppressor kinase Lkb1 in mice leads to vascular defects and midgestational lethality at embryonic day 9-11 (E9-E11). Here, we have used conditional targeting to investigate the defects underlying the Lkb1(-/-) phenotype. Endothelium-restricted deletion of Lkb1 led to embryonic death at E12.5 with a loss of vascular smooth muscle cells (vSMCs) and vascular disruption. Transforming growth factor beta (TGFbeta) pathway activity was reduced in Lkb1-deficient endothelial cells (ECs), and TGFbeta signaling from Lkb1(-/-) ECs to adjacent mesenchyme was defective, noted as reduced SMAD2 phosphorylation. The addition of TGFbeta to mutant yolk sac explants rescued the loss of vSMCs, as evidenced by smooth muscle alpha actin (SMA) expression. These results reveal an essential function for endothelial Lkb1 in TGFbeta-mediated vSMC recruitment during angiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号