首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   41篇
  国内免费   6篇
  368篇
  2024年   3篇
  2022年   4篇
  2021年   10篇
  2020年   9篇
  2019年   12篇
  2018年   14篇
  2017年   12篇
  2016年   5篇
  2015年   21篇
  2014年   19篇
  2013年   32篇
  2012年   26篇
  2011年   34篇
  2010年   16篇
  2009年   16篇
  2008年   18篇
  2007年   17篇
  2006年   11篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1992年   7篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1984年   2篇
  1981年   2篇
  1978年   1篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1958年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
51.
The organization of the ovaries in representative of the Salifidae (Hirudinida, Erpobdelliformes) was studied at the ultrastructural level for the first time. Like in other leeches, the ovaries of Barbronia weberi are composed of an outer envelope (i.e., an ovisac made up of two coelomic epithelia, muscle cells, and connective tissue) and several internal units, which are broadly similar to the ovary cords found in representatives of the Erpobdellidae. There are usually 6–8 ovary cords that are twisted or cambered with a narrow apical part and a broader, irregularly shaped distal end in each ovisac of B. weberi. Each ovary cord is built from somatic and germ‐line cells and the latter tend to form multicellular cysts that are equipped with a central cytoplasmic core (cytophore). There are two morphologically different subpopulations of germ‐line cells: oocytes and more numerous nurse cells. Growing oocytes form protuberances on the ovary cord surface and eventually detach from the cord and float freely in the ovisac lumen, whereas the other components of germ‐line cysts (i.e., nurse cells and cytophore) degenerate. It should be pointed out that there is a prominent gradient of germ‐cell development along the long axis of the cord. The somatic cells form the ovary cord envelope (the so‐called spongiosa cells) and also penetrate the spaces between germ‐line cells. Both kinds of the somatic cells, that is, those forming the cord envelope and the somatic cells that are associated with oocytes (follicular cells) have a well‐developed system of intercellular channels. Additionally, one prominent somatic cell, the apical cell, was found at the apical tip of each ovary cord. Because the aforementioned features of ovary cords found in B. weberi are very similar (with a few minor exceptions) to the ovary cords that have been described in Erpobdella octoculata and E. johanssoni, we propose the term “ovary cords of the Erpobdella type” for them. Our results support a close phylogenetic relationship between Salifidae and Erpobdellidae. J. Morphol. 275:479–488, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
52.
The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management.Weedy rice (Oryza sativa), a conspecific weed of cultivated rice, is a global threat to rice production (Delouche et al., 2007). Classified as the same species as cultivated rice, it is highly competitive (Diarra et al., 1985; Pantone and Baker, 1991; Burgos et al., 2006), difficult to control without damaging cultivated rice, and can cause almost total crop failure (Diarra et al., 1985). The competition of cultivated rice with weedy rice can lead to yield losses from less than 5% to 100% (Kwon et al., 1991; Watanabe et al., 2000; Chen et al., 2004; Ottis et al., 2005; Shivrain et al., 2009b). Besides being difficult to control, weedy rice persists in rice fields because of key weedy traits, including variable emergence (Shivrain et al., 2009b), high degree of seed shattering (Eleftherohorinos, et al., 2002; Thurber et al., 2010), high diversity in seed dormancy (Do Lago, 1982; Noldin, 1995; Vidotto and Ferrero, 2000; Burgos et al., 2011; Tseng et al., 2013), and its seed longevity in soil (Goss and Brown, 1939). Weedy rice is a problem mainly in regions with large farm sizes where direct-seeded rice culture is practiced (Delouche et al., 2007). It is not a major problem in transplanted rice culture, where roguing weeds is possible and hand labor is available. The severity of the problem has increased in recent decades because of the significant shift to direct seeding from transplanting (Pandey and Velasco, 2002; Rao et al., 2007; Chauhan et al., 2013), which is driven by water scarcity (Kummu et al., 2010; Turral et al., 2011), increasing labor costs, and migration of labor to urban areas (Grimm et al., 2008).The herbicide-resistant (HR) Clearfield rice technology (Croughan, 2003) provides an option to control weedy rice in rice using imidazolinone herbicides, in particular, imazethapyr. Imidazolinones belong to group 2 herbicides, also known as ACETOLACTATE SYNTHASE (ALS) inhibitors. Examples of herbicides in this group are imazamox, imazapic, imazaquin, and imazethapyr. Developed through mutagenesis of the ALS locus (Croughan, 1998), Clearfield rice was first commercialized in 2002 in the southern U.S. rice belt (Tan et al., 2005). Low levels of natural hybridization are known to occur between the crop and weedy rice. Gene flow generally ranges from 0.003% to 0.25% (Noldin et al., 2002; Song et al., 2003; Messeguer et al., 2004; Gealy, 2005; Shivrain et al., 2007, 2008). After the adoption of Clearfield technology, resistant weedy outcrosses were soon detected in commercial fields (Fig. 1), generally after two cropping seasons of Clearfield rice, where escaped weedy rice was able to produce seed (Zhang et al., 2006; Burgos et al., 2007, 2008). Similar observations have been reported outside the United States, in other regions adopting the technology (Gressel and Valverde, 2009; Busconi et al., 2012).Open in a separate windowFigure 1.Suspected herbicide-resistant weedy rice in a rice field previously planted with Clearfield rice along the Mississippi River Delta in Arkansas. More than 10 morphotypes of weedy rice were observed in this field, with different maturity periods. In the foreground is a typical weedy rice with pale green leaves; the rice cultivar has dark green leaves. The inset shows a weedy morphotype that matured earlier than cultivated rice.Despite this complication, the adoption of Clearfield rice technology is increasing, albeit at a slower pace than that of glyphosate-resistant crops. After a decade of commercialization, 57% of the rice area in Arkansas was planted with Clearfield rice cultivars in 2013 (J. Hardke, personal communication). Clearfield technology has been very successful at controlling weedy rice, and polls among rice growers suggest that farmers have kept the problem of HR weeds in check by following the recommended stewardship practices (Burgos et al., 2008). The most notable of these are (1) implementation of herbicide programs that incorporate all possible modes of action available for rice production; (2) ensuring maximum efficacy of the herbicides used; (3) preventing seed production from escaped weedy rice, remnant weedy rice after crop harvest, or volunteer rice and weedy rice in the next crop cycle; (4) rotating Clearfield rice with other crops to break the weedy rice cycle; and (5) practicing zero tillage to avoid burying HR weedy rice seed (Burgos et al., 2008).Clearfield rice has gained a foothold in Asia, where rice cultivation originated (Londo and Schaal, 2007; Zong et al., 2007). Clearfield rice received government support for commercialization in Malaysia in 2010 (Azmi et al., 2012) because of the severity of the weedy rice problem there. Dramatic increases in rice yields (from 3.5 to 7 metric tons ha−1) were reported in Malaysia where Clearfield rice was planted (Sudianto et al., 2013). However, the risk of gene flow and evolution of resistant weedy rice populations is high in the tropics, where up to three rice crops are planted each year, and freezing temperatures, which would reduce the density of volunteer plants, do not occur.In the United States, where Clearfield technology originated and has been used for the longest time, the interaction between HR cultivated rice and weedy rice is not yet fully understood. Two main populations of weedy rice are known to occur in the southern United States and can be found in the same cultivated rice fields. These populations are genetically differentiated, are largely distinct at the phenotypic level, and have separate evolutionary origins (Reagon et al., 2010). One group tends to have straw-colored hulls and is referred to as the SH population; a second group tends to have black-colored hulls and awns and is referred to as the BHA population (Reagon et al., 2010). Genomic evidence suggests that both groups descended from cultivated ancestors but not from the tropical japonica subgroup varieties that are grown commercially in the United States. Instead, the SH group evolved from indica, a subgroup of rice commonly grown in the lowland tropics, and the BHA group descended from aus, a related cultivated subgroup typically grown in Bangladesh and the West Bengal region (Reagon et al., 2010). Weed-weed and weed-crop hybrids are also known to occur, but prior to Clearfield commercialization, these hybrids had occurred at low frequency (Reagon et al., 2010; Gealy et al., 2012). With the advent and increased adoption of Clearfield cultivars, the impact on U.S. weedy rice population structure and the prevalence of the SH and BHA groups are unknown.Efforts to predict the possible consequences of HR or genetically modified rice on weedy rice have been a subject of discussion for many years. Both weedy rice and cultivated rice are primarily self-fertilizing, but, as mentioned above, low levels of gene flow are known to occur. Additional environmental and intrinsic genetic factors can act as prezygotic and postzygotic mating barriers between cultivated and weedy rice and influence the possibility and levels of gene flow between these groups (Craig et al., 2014; Thurber et al., 2014). However, once gene flow occurs between cultivated and weedy rice, and if the resulting hybrids are favored by selection, the resulting morphological, genetic, and physiological changes in weedy rice populations can alter the way that weedy rice evolves and competes. For example, herbicide-resistant weed outcrosses in an experimental field have been observed to be morphologically diverse (Shivrain et al., 2006), with some individuals carrying major weedy traits and well adapted to rice agriculture. Such weedy plants could be more problematic than their normal weedy counterparts. Thus, introgression of crop genes into weedy populations has the potential to change the population dynamic, genetic structure, and morphological profile of weedy plants. This, in turn, must alter our crop management practices. To increase our understanding of the impact of HR rice on the evolution of weedy rice, in this article we aim to (1) assess the frequency of herbicide resistance in weedy rice in southern U.S. rice fields with a history of Clearfield use; (2) characterize the weedy attributes of resistant populations; and (3) determine the genetic origins of herbicide-resistant weeds in U.S. fields.  相似文献   
53.
The essential‐oil compositions of one Croatian and three Serbian populations of Juniperus deltoides R.P.Adams have been determined by GC/MS analysis. In total, 147 compounds were identified, representing 97.3–98.3% of the oil composition. The oils were dominated by monoterpenes, which are characteristic components for the species of the section Juniperus. Two monoterpenes, α‐pinene and limonene, were the dominant constituents, with a summed‐up average content of 49.45%. Statistical methods were used to determine the diversity of the terpene classes and the common terpenes between the newly described J. deltoides populations from Serbia and Croatia. Only reports on several specimens from this species have been reported so far, and there are no studies that treat population diversity. Cluster analysis of the oil contents of 21 terpenes showed high correlation with the geographical distribution of the populations, separating the Croatian from the Serbian populations. The comparison of the essential‐oil compositions obtained in the present study with literature data, showed the separation of J. deltoides and J. oxycedrus ssp. oxycedrus from the western Mediterranean region.  相似文献   
54.
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.  相似文献   
55.
This is the first report on the composition and variability of the needle‐wax n‐alkanes in natural populations of Pinus nigra in Serbia. Samples of 195 trees from seven populations belonging to several infraspecific taxa (ssp. nigra, var. gocensis, ssp. pallasiana, and var. banatica) were analyzed. In general, the size of the n‐alkanes ranged from C16 to C33, with the exception of ssp. nigra, for which it ranged from C18 to C33. The most abundant were C23‐, C25‐, C27‐, and C29‐alkanes. The needle waxes of Populations IIII and V were characterized by a higher content of C23‐, C25‐, and C27‐alkanes and a lower content of C24‐, C26‐, C28‐, and C30‐alkanes, compared to the other populations, and the trees of these populations could be assigned to ssp. nigra. The samples of Population VI were characterized by higher amounts of C22‐, C24‐, C30‐, and C32‐alkanes and lower amounts of C25‐ and C27‐alkanes, and the trees could be considered as ssp. pallasiana. The samples of Population VII, consisting of trees belonging to var. banatica, were richer in C29‐, C31‐, and C33‐alkanes. The wax compositions of Populations IV and V, both composed of trees previously determined as P. nigra var. gocensis, showed a tendency of splitting. Indeed, the alkane composition of Population IV was closer to that of ssp. pallasiana pines, while that of Population V was more similar to that of ssp. nigra pines. From the results presented here, it is obvious that in the central part of the Balkan Peninsula, significant diversification and differentiation of the populations of black pine exists, and these populations could be defined as different intraspecific taxa. Our results also indicate the validity of n‐alkanes as chemotaxonomic characters within this aggregate.  相似文献   
56.
Dynamic interactions between intracellular networks regulate cellular homeostasis and responses to perturbations. Targeted therapy is aimed at perturbing oncogene addiction pathways in cancer, however, development of acquired resistance to these drugs is a significant clinical problem. A network‐based computational analysis of global gene expression data from matched sensitive and acquired drug‐resistant cells to lapatinib, an EGFR/ErbB2 inhibitor, revealed an increased expression of the glucose deprivation response network, including glucagon signaling, glucose uptake, gluconeogenesis and unfolded protein response in the resistant cells. Importantly, the glucose deprivation response markers correlated significantly with high clinical relapse rates in ErbB2‐positive breast cancer patients. Further, forcing drug‐sensitive cells into glucose deprivation rendered them more resistant to lapatinib. Using a chemical genomics bioinformatics mining of the CMAP database, we identified drugs that specifically target the glucose deprivation response networks to overcome the resistant phenotype and reduced survival of resistant cells. This study implicates the chronic activation of cellular compensatory networks in response to targeted therapy and suggests novel combinations targeting signaling and metabolic networks in tumors with acquired resistance.  相似文献   
57.
58.
弱光照和富营养对苦草生长的影响   总被引:8,自引:0,他引:8  
本研究通过比较在不同光照和营养(3光照×3营养)水平下栽培的沉水植物苦草(Vallisneria natans L.)的生长及生化指标,探讨了富营养水体中弱光和高营养对苦草生长的影响.结果表明:弱光对苦草生长的抑制作用不受外源营养浓度的影响;而高营养对苦草生长的影响受到弱光胁迫程度的交互作用,表现为在光照较强的45%日光下为抑制作用,光照最弱的2.5%日光下为促进作用,在光强居间的10%日光下没有明显作用.植物组织总氮、总磷、氨态氮及游离氨基酸氮含量随光照减弱而增加,而可溶性总糖和淀粉含量减少;总磷、氨态氮、游离氨基酸氮及淀粉含量随营养增加而增加.因此弱光照和过高营养均对苦草生长产生明显抑制作用,两者具有交互作用,主要表现为弱光影响了高营养的抑制作用.在本研究中,高营养对苦草生长有抑制作用,但尚不能导致铵中毒或储存碳缺乏;可能由于10%和2.5%日光下,弱光胁迫对苦草的代谢已产生很大抑制作用,限制了高营养对苦草的抑制作用.  相似文献   
59.
六道沟流域不同冠层小叶杨光合特性及水分利用效率研究   总被引:1,自引:0,他引:1  
魏特  王力  杨国敏 《西北植物学报》2017,37(11):2247-2255
小叶杨作为六道沟流域植被恢复的优势乔木速生树种,对该区的生态恢复与建设有着至关重要的作用。通过测定六道沟流域生长旺期(8和9月)不同冠层高度下小叶杨叶片的水势、光合气体交换参数、稳定性碳同位素比率(δ~(13)C)和叶片全N全P含量,分析了冠层叶片的δ~(13)C、光合特性指标、叶水势等在不同月份及冠层高度下的变化特征。结果表明:(1)小叶杨8、9月份间叶片光合特性指标净光合速率(P_n)、气孔导度(G_s)、胞间CO_2浓度(C_i)、蒸腾速率(T_r)均随着冠层高度增加而减小。(2)小叶杨叶片δ~(13)C和瞬时水分利用效率(WUEi)均随冠层高度增加而增加,δ~(13)C沿冠层高度的变化范围为-29.81‰~-27.43‰。(3)叶片δ~(13)C与植物的水分利用效率呈正相关关系,8月份和9月份δ~(13)C沿树高的变化幅度分别为2.22‰和2.12‰。研究发现,六道沟流域小叶杨叶片确实受到来自树高所引起的水分胁迫,叶片δ~(13)C能真实反映其长期的水分利用状况,且叶片δ~(13)C的变化是自身遗传特性与环境因子共同作用的结果。  相似文献   
60.
Biogeographic studies in Amazonia typically describe biodiversity across interfluvia, rarely within them, where geographic variability in morphological traits might be observed. We tested for intraspecific phenotypic variation in three bird species within the Purus–Madeira interfluvium (Central Amazon) and whether phenotypes were correlated with environmental heterogeneity or geographic distance among sites. We compared coloration indexes derived from reflectance spectra and morphometrics of up to five adult individuals of each sex among 11 sites within the interfluvium and contrasted them with proxies for geographic distance and environmental variation (tree basal area and bird community). Environmental heterogeneity was minimally spatially autocorrelated, and there were no obvious geographical barriers to dispersal in the study region. The null hypothesis was that we would see either no phenotypic variation or random variation that was not explained by the tested variables. Half of the cases analyzed showed intraspecific morphological variation. Coloration varied more frequently than morphometrics, and color was better explained by environmental heterogeneity, particularly in males, whereas brightness also varied with geographic distance. Geographic distance explained the only case of variation in morphometrics. Our results indicate that coloration, particularly plumage brightness, is more labile than morphometric traits and that plumage color might be under stronger effects of local adaptation than brightness, which also seems to be under effects of neutral drift and gene flow among populations. Higher frequencies of association between male coloration and the environment suggest a role of non-arbitrary mechanisms of sexual selection on the expression of male phenotypes, whereas arbitrary intersexual selection might explain the randomly distributed variation that is not explained by environmental heterogeneity or geographic distance. We revealed intraspecific phenotypic variation in a spatial extent usually not considered in biogeographic studies in the Amazon and demonstrate that both local adaptation and neutral drift are important to explain intraspecific trait diversification at this geographical scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号