首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1247篇
  免费   82篇
  国内免费   1篇
  2023年   7篇
  2022年   17篇
  2021年   22篇
  2020年   24篇
  2019年   11篇
  2018年   21篇
  2017年   18篇
  2016年   32篇
  2015年   40篇
  2014年   75篇
  2013年   72篇
  2012年   110篇
  2011年   102篇
  2010年   57篇
  2009年   53篇
  2008年   86篇
  2007年   107篇
  2006年   97篇
  2005年   82篇
  2004年   72篇
  2003年   77篇
  2002年   71篇
  2001年   6篇
  2000年   10篇
  1999年   14篇
  1998年   12篇
  1997年   11篇
  1996年   7篇
  1995年   4篇
  1993年   4篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1973年   1篇
排序方式: 共有1330条查询结果,搜索用时 23 毫秒
851.
Monoclonal antibodies (mAbs) against morphine are important in the development of immunotherapeutic and diagnostic methods for the treatment and prevention of drug addiction. By the surface plasmon resonance (SPR) and enzyme immunoassay techniques, we characterized two previously obtained mAbs 3K11 and 6G1 and showed their ability to recognize free morphine and morphine‐containing antigens in different ways because of the epitope specificity thereof. Using the defined amino acid sequences, we obtained three‐dimensional models of the variable regions of Fab fragments of these antibodies and compared them with the known sequence and spatial structure of the anti‐morphine antibody 9B1. Docking simulations are performed to obtain models of the antibodies complexes with morphine. Differences in the models of 3K11 and 6G1 complexes with morphine correlate with their experimentally detected epitope specificity. The results, in particular, can be used for the structure‐based design of the corresponding humanized antibodies. According to our modeling and docking results, the very different modes of morphine binding to mAbs 3K11 and 6G1 are qualitatively similar to those previously reported for cocaine and two anti‐cocaine antibodies. Thus, the obtained structural information brings more insight into the hapten recognition diversity.  相似文献   
852.
853.
The photochemistry of alkyl phenylglyoxylates (APG) was further investigated using time-resolved infrared spectroscopy. The primary focus was on the analysis of weak transient bands around 1828 and 1730 cm(-1) in the time-resolved FTIR spectra of glyoxylates. The observed transients were assigned to benzoyl and alkyl mandelate ester radicals, respectively. The formation of benzoyl radical was fast and attributed to the Norrish Type I process. In addition, the intensities of the strong FTIR bands around 1680 and 2100 cm(-1) were used to analyze the yields of the triplet state and ketene, respectively. These new and previous data on APG photochemistry are discussed in relation to the acrylate polymerization photoinitiation by alkyl phenylglyoxylates.  相似文献   
854.
Changing kinetics of large-conductance potassium (BK) channels in hair cells of nonmammalian vertebrates, including the chick, plays a critical role in electrical tuning, a mechanism used by these cells to discriminate between different frequencies of sound. BK currents are less abundant in low-frequency hair cells and show large openings in response to a rise in intracellular Ca(2+) at a hair cell's operating voltage range (spanning -40 to -60 mV). Although the molecular underpinnings of its function in hair cells are poorly understood, it is established that BK channels consist of a pore-forming α-subunit (Slo) and a number of accessory subunits. Currents from the α (Slo)-subunit alone do not show dramatic increases in response to changes in Ca(2+) concentrations at -50 mV. We have cloned the chick β(4)- and β(1)-subunits and show that these subunits are preferentially expressed in low-frequency hair cells, where they decrease Slo surface expression. The β(4)-subunit in particular is responsible for the BK channel's increased responsiveness to Ca(2+) at a hair cell's operating voltage. In contrast, however, the increases in relaxation times induced by both β-subunits suggest additional mechanisms responsible for BK channel function in hair cells.  相似文献   
855.
Daily patterns of animal behavior are potentially of vast functional importance. Fitness benefits have been identified in nature by the association between individual timing and survival or by the fate of individuals after experimental deletion of their circadian pacemaker. The recent advances in unraveling the molecular basis of circadian timing enable new approaches to natural selection on timing. The investigators report on the effect and fate of the mutant Per2(Brdm1) allele in 4 replicate populations of house mice in a seminatural outside environment over 2 years. This allele is known to compromise circadian organization and entrainment and to cause multiple physiological disturbances. Mice (N=250) bred from Per2(Brdm1) heterozygotes were implanted subcutaneously with transponders and released in approximately Mendelian ratios in four 400 m(2) pens. An electronic system stored the times of all visits to feeders of each individual. The study first demonstrates that mice are not explicitly nocturnal in this natural environment. Feeding activity was predominantly and sometimes exclusively diurnal and spread nearly equally over day and night under the protective snow cover in winter. The effect of Per2(Brdm1) on activity timing is negligible compared to seasonal changes in all genotypes. Second, the Per2(Brdm1) allele did not have persistent negative effects on fitness. In the first year, the allele gradually became less frequent by reducing survival. New cohorts captured had the same Per2(Brdm1) frequency as the survivors from previous cohorts, consistent with an absence of an effect on reproduction. In the second year, the allele recovered to about its initial frequency (0.54). These changes in selective advantage were primarily due to female mice, as females lived longer and the sex ratio dropped to about 25% males in the population. While it is unknown which selective advantage led to the recovery, the results caution against inferences from laboratory experiments on fitness consequences in the natural environment. It also demonstrates that the activity of mice, while strictly nocturnal in the laboratory, may be partially or completely diurnal in the field. The new method allows assessment of natural selection on specific alleles on a day-today basis.  相似文献   
856.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and Cas proteins represent an adaptive microbial immunity system against viruses and plasmids. Cas3 proteins have been proposed to play a key role in the CRISPR mechanism through the direct cleavage of invasive DNA. Here, we show that the Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii cleaves endonucleolytically and exonucleolytically (3'-5') single-stranded DNAs and RNAs, as well as 3'-flaps, splayed arms, and R-loops. The degradation of branched DNA substrates by MJ0384 is stimulated by the Cas3 helicase MJ0383 and ATP. The crystal structure of MJ0384 revealed the active site with two bound metal cations and together with site-directed mutagenesis suggested a catalytic mechanism. Our studies suggest that the Cas3 HD nucleases working together with the Cas3 helicases can completely degrade invasive DNAs through the combination of endo- and exonuclease activities.  相似文献   
857.
Nox4, a member of Nox family of NADPH oxidase expressed in nonphagocytic cells, is a major source of reactive oxygen species in many cell types. But understanding of the role of Nox4 in the production of ROS and of regulation mechanism of oxidase activity is largely unknown. This study reports for the first time the generation and characterization of 5 mAbs against a recombinant Nox4 protein (AA: 206-578). Among 5 novel mAbs, 3 mAbs (8E9, 5F9, 6B11) specifically recognized Nox4 protein in HEK293 transfected cells or human kidney cortex by western blot analysis; mAb 8E9 reacted with intact tet-induced T-REx™ Nox4 cells in FACS studies. The other 2 mAbs 10B4 and 7C9 were shown to have a very weak reactivity after purification. Immunofluorescence confocal microscopy showed that Nox4 localized not only in the perinuclear and endoplasmic reticulum regions but also at the plasma membrane of the cells which was further confirmed by TIRF-microscopy. Epitope determination showed that mAb 8E9 recognizes a region on the last extracellular loop of Nox4, while mAbs 6B11 and 5F9 are directed to its cytosolic tail. Contrary to mAb 6B11, mAb 5F9 failed to detect Nox4 at the plasma membrane. Cell-free oxidase assays demonstrated a moderate but significant inhibition of constitutive Nox4 activity by mAbs 5F9 and 6B11. In conclusion, 5 mAbs raised against Nox4 were generated for the first time. 3 of them will provide powerful tools for a structure/function relationship of Nox4 and for physiopathological investigations in humans.  相似文献   
858.

Background

Multifunctional l-amino acid oxidases (LAAOs) occur widely in snake venoms.

Methods

The l-AAO from Bothrops leucurus (Bl-LAAO) venom was purified using a combination of molecular exclusion and ion-exchange chromatographies. We report some biochemical features of Bl-LAAO associated with its effect on platelet function and its cytotoxicity.

Results

Bl-LAAO is a 60 kDa monomeric glycoprotein. Its N-terminal sequence shows high homology to other members of the snake-venom LAAO family. Bl-LAAO catalyzes oxidative deamination of l-amino acids with the generation of H2O2. The best substrates were: l-Met, l-Norleu, l-Leu, l-Phe and l-Trp. The effects of snake venom LAAOs in hemostasis, especially their action on platelet function remain largely unknown. Bl-LAAO dose-dependently inhibited platelet aggregation of both human PRP and washed platelets. Moreover, the purified enzyme exhibited a killing effect in vitro against Leishmania sp., promastigotes, with a very low EC50 of 0.07 μM. Furthermore, the cytotoxicity of Bl-LAAO was observed in the stomach cancer MKN-45, adeno carcinoma HUTU, colorectal RKO and human fibroblast LL-24 cell lines. The enzyme released enough H2O2 in culture medium to induce apoptosis in cells in a dose- and time-dependent manner. The biological effects were inhibited by catalase.

Conclusion

Bl-LAAO, a major component of B. leucurus venom, is a cytotoxin acting primarily via the generation of high amounts of H2O2 which kill the cells.

General significance

These results allow us to consider the use of LAAOs as anticancer agents, as tools in biochemical studies to investigate cellular processes, and to obtain a better understanding of the envenomation mechanism.  相似文献   
859.
Dimeric bis-benzimidazoles (DBn) are the compounds specifically binding to A-T enriched sequences in the DNA minor groove. Due to this property they can inhibit DNA-dependent enzymes. We show that inhibition of the helicase activity of HCV NS3 protein by DBn was due to a novel mechanism, which involved direct binding of the ligands to the enzyme. The binding potency and inhibition efficacy depended on the length of the linker between the benzimidazole fragments. The most effective inhibitor DB11 partially prevented activation of NTPase activity of NS3 by poly(U) and increased affinity of the enzyme to the helicase substrate DNA.  相似文献   
860.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号