首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   32篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   10篇
  2018年   11篇
  2017年   6篇
  2016年   12篇
  2015年   34篇
  2014年   26篇
  2013年   39篇
  2012年   27篇
  2011年   36篇
  2010年   26篇
  2009年   13篇
  2008年   30篇
  2007年   33篇
  2006年   20篇
  2005年   28篇
  2004年   28篇
  2003年   23篇
  2002年   24篇
  2001年   13篇
  2000年   10篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   6篇
  1992年   10篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   2篇
  1987年   7篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
排序方式: 共有555条查询结果,搜索用时 31 毫秒
101.
The fall armyworm (FAW), Spodoptera frugiperda, is a major pest native to the Americas that has recently invaded the Old World. Point mutations in the target-site proteins acetylcholinesterase-1 (ace-1), voltage-gated sodium channel (VGSC) and ryanodine receptor (RyR) have been identified in S. frugiperda as major resistance mechanisms to organophosphate, pyrethroid and diamide insecticides respectively. Mutations in the adenosine triphosphate-binding cassette transporter C2 gene (ABCC2) have also been identified to confer resistance to Cry1F protein. In this study, we applied a whole-genome sequencing (WGS) approach to identify point mutations in the target-site genes in 150 FAW individuals collected from China, Malawi, Uganda and Brazil. This approach revealed three amino acid substitutions (A201S, G227A and F290V) of S. frugiperda ace-1, which are known to be associated with organophosphate resistance. The Brazilian population had all three ace-1 point mutations and the 227A allele (mean frequency = 0.54) was the most common. Populations from China, Malawi and Uganda harbored two of the three ace-1 point mutations (A201S and F290V) with the 290V allele (0.47–0.58) as the dominant allele. Point mutations in VGSC (T929I, L932F and L1014F) and RyR (I4790M and G4946E) were not detected in any of the 150 individuals. A novel 12-bp insertion mutation in exon 15 of the ABCC2 gene was identified in some of the Brazilian individuals but absent in the invasive populations. Our results not only demonstrate robustness of the WGS-based genomic approach for detection of resistance mutations, but also provide insights for improvement of resistance management tactics in S. frugiperda.  相似文献   
102.
A hybrid anaerobic solid-liquid bioreactor for food waste digestion   总被引:5,自引:0,他引:5  
A hybrid anaerobic solid-liquid (HASL) bioreactor is an enhanced two-phase anaerobic system, that consists of a solid waste reactor as the acidification reactor and a wastewater reactor, i.e. an upflow anaerobic sludge blanket (UASB) reactor as the methanogenic reactor. Food waste digestion in HASL bioreactors with pre-acidification and HASL operation stages was investigated in two separate runs. After 8 days of pre-acidification in Run A and 4 days in Run B, total volatile fatty acid (TVFA) and chemical oxygen demand (COD) concentrations in the leachates of both acidification reactors were similar. During HASL operation stage, TVFA and COD removal in the methanogenic phase were 77–100% and 75–95%, respectively. Some 99% of the total methane generated was from the methanogenic phase with a content of 68–70% methane. At the end of operation, about 59–60% of the added volatile solids (VS) were removed with a methane yield of 0.25 l g–1 VS.  相似文献   
103.
Biogranulation is a promising biotechnology developed for wastewater treatment. Biogranules exhibit a matrix microbial structure, and intensive research has shown that extracellular polymeric substances (EPS) are a major component of the biogranule matrix material in both anaerobic and aerobic granules. This paper aims to review the role of EPS in biogranulation, factors influencing EPS production, the effect of EPS on cell surface properties of biogranules, and the relationship of EPS to the structural stability of biogranules. EPS production is substantially enhanced when the microbial community is subject to stressful culture conditions, and the stimulated EPS production in the microbial matrix in turn favours the formation of anaerobic and aerobic granules. EPS can also play an essential role in maintaining the integrity and stability of spatial structure in mature biogranules. It is expected that this paper can provide deep insights into the functions of EPS in the biogranulation process.  相似文献   
104.
The terminal region of barley chromosome 5HL controls malt extract, diastatic power, free amino acid nitrogen, alpha-amylase activity, seed dormancy and pre-harvest sprouting. Comparative analysis of the barley and rice maps has established that the terminal region of barley chromosome 5HL is syntenic to rice chromosome 3L near the telomere end. The rice BAC (Bacterial Artificial Chromosome) sequences covering the region of chromosome 3L were used to search barley expressed sequenced tags database. Thirty-three genes were amplified by PCR (polymerase chain reaction) with the primers designed from barley ESTs (expressed sequence tag). Comparison of the sequences of the PCR generated DNA fragments revealed polymorphisms including single nucleotide polymorphism (SNP), insertions or deletions between the barley varieties. Seven new PCR based molecular markers were developed and mapped within 10 cM in three doubled haploid barley populations (Stirling × Harrington, Baudin × AC Metcalfe and Chebec × Harrington). The mapped genes maintain the micro-syntenic relationship between barley and rice. These gene specific markers provide simple and efficient tools for germplasm characterization and marker-assisted selection for barley malting quality, and ultimately lead to isolation and identification of the major gene(s) controlling multiple quality traits on barley chromosome 5HL.  相似文献   
105.
AIMS: This paper attempts to investigate the role of cellular polysaccharides in the formation and stability of aerobic granules. METHODS AND RESULTS: Three column sequential aerobic sludge blanket reactors (R1, R2 and R3) were operated at a superficial air upflow velocity of 0.3 cm s(-1), 1.2 cm s(-1) and 2.4 cm s(-1), respectively. Aerobic granules appeared at cycle 42 in R2 and R3 with a mean size of 0.37 mm in R2 and 0.35 mm in R3, however, aerobic granulation was not observed in R1. After the formation of aerobic granules, the sludge volume index (SVI) decreased to 55 ml g(-1) in R2 and 46 ml g(-1) in R3. Aerobic granulation was concurrent with a sharp increase of cellular polysaccharides normalized to cellular proteins, which increased from 5.7 to 13.0 mg per mg proteins in R2, and 7.5-13.9 mg per mg protein in R3. The content of polysaccharides in aerobic granules was 2-3 times higher than that in the bioflocci cultivated in R1. The disappearance of aerobic granules in R2 was tightly coupled to a drop in cellular polysaccharides. After the reappearance of bioflocci in R2, the content of cellular polysaccharides were found to be restored to the level observed in R1. CONCLUSION: It appears that the production of cellular polysaccharides could be stimulated by hydrodynamic shear force and contributes to the formation and stability of aerobic granules. SIGNIFICANCE AND IMPACT OF THE STUDY: It is expected that this study would provide useful information for better understanding the mechanisms of aerobic granulation.  相似文献   
106.
107.
Aerobic granules are self-immobilized aggregates of microorganisms and represent a relatively new form of cell immobilization developed for biological wastewater treatment. In this study, both culture-based and culture-independent techniques were used to investigate the bacterial diversity and function in aerobic phenol- degrading granules cultivated in a sequencing batch reactor. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes demonstrated a major shift in the microbial community as the seed sludge developed into granules. Culture isolation and DGGE assays confirmed the dominance of β-Proteobacteria and high-G+C gram-positive bacteria in the phenol-degrading aerobic granules. Of the 10 phenol-degrading bacterial strains isolated from the granules, strains PG-01, PG-02, and PG-08 possessed 16S rRNA gene sequences that matched the partial sequences of dominant bands in the DGGE fingerprint belonging to the aerobic granules. The numerical dominance of strain PG-01 was confirmed by isolation, DGGE, and in situ hybridization with a strain-specific probe, and key physiological traits possessed by PG-01 that allowed it to outcompete and dominate other microorganisms within the granules were then identified. This strain could be regarded as a functionally dominant strain and may have contributed significantly to phenol degradation in the granules. On the other hand, strain PG-08 had low specific growth rate and low phenol degradation ability but showed a high propensity to autoaggregate. By analyzing the roles played by these two isolates within the aerobic granules, a functional model of the microbial community within the aerobic granules was proposed. This model has important implications for rationalizing the engineering of ecological systems.  相似文献   
108.
Maternal immune tolerance towards the fetus and placenta is thought to be established in part by pathways that attenuate T cell priming to antigens released from the placenta into maternal blood. These pathways remain largely undefined and their existence, at face value, seems incompatible with a mother''s need to maintain a functional immune system during pregnancy. A particular conundrum is evident if we consider that maternal antigen presenting cells, activated in order to prime T cells to pathogen-derived antigens, would also have the capacity to prime T cells to co-ingested placental antigens. Here, we address this paradox using a transgenic system in which placental membranes are tagged with a strong surrogate antigen (ovalbumin). We find that although a remarkably large quantity of acellular ovalbumin-containing placental material is released into maternal blood, splenic CD8 T cells in pregnant mice bearing unmanipulated T cell repertoires are not primed to ovalbumin even if the mice are intravenously injected with adjuvants. This failure was largely independent of regulatory T cells, and instead was linked to the intrinsic characteristics of the released material that rendered it selectively non-immunogenic, potentially by sequestering it from CD8α+ dendritic cells. The release of ovalbumin-containing placental material into maternal blood thus had no discernable impact on CD8 T cell priming to soluble ovalbumin injected intravenously during pregnancy, nor did it induce long-term tolerance to ovalbumin. Together, these results outline a major pathway governing the maternal immune response to the placenta, and suggest how tolerance to placental antigens can be maintained systemically without being detrimental to host defense.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号