首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   503篇
  免费   31篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   10篇
  2018年   11篇
  2017年   5篇
  2016年   12篇
  2015年   33篇
  2014年   26篇
  2013年   38篇
  2012年   27篇
  2011年   35篇
  2010年   24篇
  2009年   12篇
  2008年   25篇
  2007年   33篇
  2006年   18篇
  2005年   28篇
  2004年   27篇
  2003年   23篇
  2002年   24篇
  2001年   13篇
  2000年   10篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1992年   10篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   2篇
  1987年   7篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
排序方式: 共有534条查询结果,搜索用时 46 毫秒
451.
Choline acetyltransferase (ChAT) as a rate-limiting enzyme in the biosynthetic pathway of acetylcholine is thought to be present in all cholinergic neurons. However, its immunoreactivity has not been successfully applied to the study of cholinergic neurons in the pancreas. In a previous study in the pancreas of newborn guinea pig we reported the colocalization of nicotinamide adenine dinucleotide hydrogen phosphate-diaphorase (NADPH-d), a marker for nitric oxide synthase (NOS) with various neuropeptides as well as dopamine-β-hydroxylase (DβH), the enzyme responsible for converting dopamine to noradrenaline. Whether NADPH-d is colocalized with ChAT in the pancreatic neurons is not known. Also it would be interesting to find out whether noradrenaline and acetylcholine could be colocalized in the same pancreatic neurons. In the present study, a method for triple labelling of ChAT, DβH and NADPH-d was used to answer the above questions. Colocalization of ChAT, DβH and NADPH-d was constantly demonstrated in the same neurons in the same sections. It is concluded that some of the pancreatic neurons may utilize more than one neurotransmitter such as nitric oxide (NO), acetylcholine and noradrenaline to achieve their function. The possible cotransmission of acetylcholine and noradrenaline was extremely intriguing, and its mechanism and significance needs to be further investigated.  相似文献   
452.
Urinary epidermal growth factor (EGF) excretion was calculated as ng EGF per mg creatinine and ng EGF per 24 hr. It was increased 4-9 fold in rats with genetic (BB) or streptozotocin-induced diabetes. It decreased to 2-3 fold control values in insulin-treated animals. In contrast, EGF concentration in serum was lower in diabetic than in control rats (360 +/- 72 vs 524 +/- 150 pg/ml, P .086); EGF level in plasma was unchanged (319 +/- 67 vs 313 +/- 96 pg/ml). In diabetic rats EGF content was increased in submaxillary glands (1018 +/- 259 vs 738 +/- 122 pg/mg protein, P .060) but unchanged in the kidneys (70 +/- 18 vs 65 +/- 6 pg/mg protein in controls). EGF binding to the liver microsomes in diabetic rats was decreased by 30-40% and was not restored by insulin therapy. Binding to the kidneys also showed a tendency to decrease in diabetic animals. The EGF excretion and receptor binding were normal in obese normoglycemic Zucker fa/fa rats. We suggest that hyperglycemia and/or glucosuria may affect EGF synthesis and/or excretion in the kidneys and EGF synthesis or accumulation in the megakaryocytes. The mechanism of decreased EGF receptor binding remains to be clarified.  相似文献   
453.
S S Tay  W C Wong 《Acta anatomica》1990,139(4):367-373
The present study reports ultrastructural changes in the gracile nucleus of male Wistar rats after alloxan-induced diabetes. During the acute phase (3-7 days) degenerating electron-dense dendrites and axon terminals were dispersed in the neuropil. Degenerating dendrites were characterized by an electron-dense cytoplasm, swollen mitochondria, dilated endoplasmic reticulum and randomized ribosomes. Degenerating axon terminals were characterized by an electron-dense cytoplasm and clustering of small spherical agranular vesicles. Degenerating axon terminals may form the central element or part of a synaptic glomerulus. Macrophages were present in the neuropil and in the process of engulfing neuronal elements. During the medium phase (1-6 months), most of the degenerating dendrites and axon terminals had been engulfed or removed by macrophages. During the late phase (9-12 months), a second wave of degeneration occurred in the gracile nucleus, similar to the acute phase.  相似文献   
454.
In this study for the first time the effect of high-pressure CO2 on the coacervation of alpha-elastin was investigated using analytical techniques including light spectroscopy and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging and circular dichroism (CD) spectroscopy. The coacervation behavior of alpha-elastin, a protein biopolymer, was determined at temperatures below 40 degrees C and pressures lower than 180 bar. At these conditions elevated pressures did not disrupt the ability of alpha-elastin to coacervate. It was feasible to monitor the presence of amide I, II, and III bands for alpha-elastin at high-pressure CO2 using ATR-FTIR imaging. At a constant temperature the peak absorption was substantially enhanced by increasing the pressure of the system. CD analysis demonstrated the preservation of secondary structure attributes of alpha-elastin exposed to dense gas CO2 at the pressure range investigated in this study. The lower critical solution temperature of alpha-elastin was dramatically decreased from 37 to 16 degrees C when the CO2 pressure increased from 1 to 50 bar, without a significant change after that. Carbon dioxide at high pressures also impeded the reversible coacervation of alpha-elastin solution. These effects were predominantly associated with the lowered pH of the aqueous solution and maybe the interaction between CO2 and hydrophobic domains of alpha-elastin.  相似文献   
455.
Applying microsatellite DNA markers in population genetic studies of the pest moth Helicoverpa armigera is subject to numerous technical problems, such as the high frequency of null alleles, occurrence of size homoplasy, presence of multiple copies of flanking sequence in the genome and the lack of PCR amplification robustness between populations. To overcome these difficulties, we developed exon-primed intron-crossing (EPIC) nuclear DNA markers for H. armigera based on ribosomal protein (Rp) and the Dopa Decarboxylase (DDC) genes and sequenced alleles showing length polymorphisms. Allele length polymorphisms were usually from random indels (insertions or deletions) within introns, although variation of short dinucleotide DNA repeat units was also detected. Mapping crosses demonstrated Mendelian inheritance patterns for these EPIC markers and the absence of both null alleles and allele 'dropouts'. Three examples of allele size homoplasies due to indels were detected in EPIC markers RpL3, RpS6 and DDC, while sequencing of multiple individuals across 11 randomly selected alleles did not detect indel size homoplasies. The robustness of the EPIC-PCR markers was demonstrated by PCR amplification in the related species, H. zea, H. assulta and H. punctigera.  相似文献   
456.
The effect of shear force on aerobic granulation was studied in four column-type, sequential aerobic sludge blanket reactors. Hydrodynamic turbulence caused by upflow aeration served as the main shear force in the systems. Results showed that aerobic granulation was closely associated with the strength of shear force. Compact and regular aerobic granules were formed in the reactors with a superficial upflow air velocity higher than 1.2 cm s(-1). However, only typical bioflocs were observed in the reactor with a superficial upflow air velocity of 0.3 cm s(-1) during the whole experimental period. The characteristics of the aerobic granules in terms of settling ability, specific gravity, hydrophobicity, polysaccharide and protein content and specific oxygen utilization rate (SOUR) were examined. It was found that the shear force has a positive effect on the production of polysaccharide, SOUR, hydrophobicity of cell surface and specific gravity of granules. The hydrophobicity of granular sludge is much higher than that of bioflocs. Therefore, it appears that hydrophobicity could induce and further strengthen cell-cell interaction and might be the main force for the initiation of granulation. The shear-stimulated production of polysaccharides favors the formation of a stable granular structure. This research provides experimental evidence to show that shear force plays a crucial role in aerobic granulation and further influences the structure and metabolism of granules.  相似文献   
457.
Superoxide dismutases (SODs) are ubiquitous metalloenzymes that catalyze the dismutation of superoxide radicals (O2-) to molecular oxygen (O2) and hydrogen peroxide (H2O2). In this study we characterized an Arabidopsis thaliana CuZnSOD (CSD1), a close ortholog of a previously identified Brassica juncea CuZnSOD (MSOD1). CSD1 and other two homologs CSD2 and CSD3 were spatially regulated in Arabidopsis, and CSD1 exhibited distinct expression patterns in response to different stress treatments. To investigate the in vivo function of SOD, transgenic Arabidopsis plants, expressing sense and antisense MSOD1 RNAs, were generated and those with altered SOD activity were selected for further characterization. Although SOD transgenic plants exhibited normal phenotypes, the shoot regeneration response in transgenic explants was significantly affected by the modulated SOD activity and the corresponding H2O2 levels. Transgenic explants with downregulated SOD activity were poorly regenerative, whereas those with upregulated SOD activity were highly regenerative. These results suggest that shoot regeneration in vitro is regulated by the SOD activity.  相似文献   
458.
Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m−3 day−1 in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (μ overall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (k d), observed yield (Y obs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Y obs) is associated with an increased solid retention time, while k d and Y changed insignificantly and can be regarded as constants under different organic loading rates.  相似文献   
459.
In the present study, we studied the factors that contribute to the injury-resistant property of melanopsin-expressing retinal ganglion cells (mRGCs). Since phosphatidylinositol-3 kinase (PI3 K)/Akt signaling pathway is one of the well-known pathways for neuronal cell survival, we investigated the survival of mRGCs by applying the PI3 K/Akt specific inhibitors after injury. Two injury models, unilateral optic nerve transection and ocular hypertension, were adopted using Sprague-Dawley rats. Inhibitors of PI3 K/Akt were injected intravitreally following injuries to inhibit the PI3 K/Akt signaling pathway. Retinas were dissected after designated survival time, immunohistochemistry was carried out to visualize the mRGCs using melanopsin antibody and the number of mRGCs was counted. Co-expression of melanopsin and phospho-Akt (pAkt) was also examined. Compared to the survival of non-melanopsin-expressing RGCs, mRGCs showed a marked resistance to injury and co-expressed pAkt. Application of PI3 K/Akt inhibitors decreased the survival of mRGCs after injury. Our previous study has shown that mRGC are less susceptible to injury following the induction of ocular hypertension. In this study, we report that mRGCs were injury-resistant to a more severe type of injury, the optic nerve transection. More importantly, the PI3 K/Akt pathway was found to play a role in maintaining the survival of mRGCs after injury.  相似文献   
460.
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 103 cells and 1.2×106 molecules. The model produces cell migration patterns that are comparable to laboratory observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号