首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   79篇
  国内免费   2篇
  2023年   5篇
  2022年   17篇
  2021年   31篇
  2020年   16篇
  2019年   15篇
  2018年   30篇
  2017年   39篇
  2016年   36篇
  2015年   58篇
  2014年   55篇
  2013年   63篇
  2012年   78篇
  2011年   80篇
  2010年   54篇
  2009年   39篇
  2008年   61篇
  2007年   49篇
  2006年   40篇
  2005年   30篇
  2004年   22篇
  2003年   25篇
  2002年   18篇
  2001年   15篇
  2000年   18篇
  1999年   12篇
  1998年   8篇
  1997年   6篇
  1996年   11篇
  1995年   9篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1977年   4篇
  1976年   2篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
排序方式: 共有1004条查询结果,搜索用时 227 毫秒
891.
Maize (Zea mays L.) endosperm transfer cells are essential for kernel growth and development so they have a significant impact on grain yield. Although structural and ultrastructural studies have been published, little is known about the development of these cells, and prior to this study, there was a general consensus that they contain only flange ingrowths. We characterized the development of maize endosperm transfer cells by bright field microscopy, transmission electron microscopy, and confocal laser scanning microscopy. The most basal endosperm transfer cells (MBETC) have flange and reticulate ingrowths, whereas inner transfer cells only have flange ingrowths. Reticulate and flange ingrowths are mostly formed in different locations of the MBETC as early as 5 days after pollination, and they are distinguishable from each other at all stages of development. Ingrowth structure and ultrastructure and cellulose microfibril compaction and orientation patterns are discussed during transfer cell development. This study provides important insights into how both types of ingrowths are formed in maize endosperm transfer cells.  相似文献   
892.
Apoptosis is a fundamental homeostatic mechanism essential for the normal growth, development and maintenance of every tissue and organ. Dying cells have been defined as apoptotic by distinguishing features, including cell contraction, nuclear fragmentation, blebbing, apoptotic body formation and maintenance of intact cellular membranes to prevent massive protein release and consequent inflammation. We now show that during early apoptosis limited membrane permeabilization occurs in blebs and apoptotic bodies, which allows release of proteins that may affect the proximal microenvironment before the catastrophic loss of membrane integrity during secondary necrosis. Blebbing, apoptotic body formation and protein release during early apoptosis are dependent on ROCK and myosin ATPase activity to drive actomyosin contraction. We identified 231 proteins released from actomyosin contraction-dependent blebs and apoptotic bodies by adapted SILAC (stable isotope labeling with amino acids in cell culture) combined with mass spectrometry analysis. The most enriched proteins released were the nucleosomal histones, which have previously been identified as damage-associated molecular pattern proteins (DAMPs) that can initiate sterile inflammatory responses. These results indicate that limited membrane permeabilization occurs in blebs and apoptotic bodies before secondary necrosis, leading to acute and localized release of immunomodulatory proteins during the early phase of active apoptotic membrane blebbing. Therefore, the shift from apoptosis to secondary necrosis is more graded than a simple binary switch, with the membrane permeabilization of apoptotic bodies and consequent limited release of DAMPs contributing to the transition between these states.  相似文献   
893.
The main byproduct of biodiesel production is glycerol. Here, crude glycerol – byproduct of biodiesel industry – was evaluated as sole carbon source in rhamnolipids production by Pseudomonas aeruginosa. The optimal concentration of crude glycerol and sodium nitrate was assessed using response surface methodology, resulting in about 40–50 mg/L.h of rhamnolipids, which was about four times higher than previously reported in the literature. Fermentation parameters were similar to those observed with commercial glycerol as sole carbon source. The optimized medium was suitable for production using simple (22.9 mg/L.h) and fed-batch (32.4 mg/L.h) fermentation in oxygen-controlled bioreactor without foaming formation. Composition and relative abundance of rhamnolipid congeners showed that crude glycerol had little effect on metabolic pathways involved in their production. CMC values were approximately 130 mg/L and 230–260 mg/L for rhamnolipids from crude and commercial glycerol fermentation, respectively, which were about 2–6 times lower than CMC values of synthetic surfactants.  相似文献   
894.
Antimicrobial peptides (AMPs) constitute an essential part of the innate immune defence. Pathogenic bacteria have evolved numerous strategies to withstand AMP‐mediated killing. The influence of host epithelia on bacterial AMP resistance is, however, still largely unknown. We found that adhesion to pharyngeal epithelial cells protected Neisseria meningitidis, a leading cause of meningitis and sepsis, from the human cathelicidin LL‐37, the cationic model amphipathic peptide (MAP) and the peptaibol alamethicin, but not from polymyxin B. Adhesion to primary airway epithelia resulted in a similar increase in LL‐37 resistance. The inhibition of selective host cell signalling mediated by RhoA and Cdc42 was found to abolish the adhesion‐induced LL‐37 resistance by a mechanism unrelated to the actin cytoskeleton. Moreover, N. meningitidis triggered the formation of cholesterol‐rich membrane microdomains in pharyngeal epithelial cells, and host cell cholesterol proved to be essential for adhesion‐induced resistance. Our data highlight the importance of Rho GTPase‐dependent host cell signalling for meningococcal AMP resistance. These results indicate that N. meningitidis selectively exploits the epithelial microenvironment in order to protect itself from LL‐37.  相似文献   
895.
Cat eye syndrome is a rare congenital disease characterized by the existence of a supernumerary chromosome derived from chromosome 22, with a variable phenotype comprising anal atresia, coloboma of the iris and preauricular tags or pits. We report a girl with cat eye syndrome, presenting short stature, with growth hormone deficiency due to posterior pituitary ectopia. Short stature is a common feature of this syndrome, and the association with a structural pituitary anomaly has been described, however growth hormone deficiency and the underlying mechanisms are rarely reported. A review on short stature and growth hormone deficiency in cat eye syndrome is conducted.  相似文献   
896.
Eryngium duriaei (Apiaceae) is an endemic taxa from Iberian Peninsula. Some doubts exist in the literature about the taxa relationships, especially among Iberian populations at different altitudes. Also, as other Apiaceae, this species presents a large potential for essential oil production. Considering all this, a multidisciplinary study comprising taxonomic, cytological (using flow cytometry and chromosome counts) and chemical (essential oils) analyses was performed with the objective to morphologically characterize this species and to evaluate the cytotaxonomical and chemical diversity of E. duriaei Portuguese populations. FCM and chromosome counts have shown that every individual presented the same ploidy level, i.e., 2n = 2x = 16 chromosomes. However, flow cytometric analyses revealed that individuals of E. duriaei from higher altitudes (»1,700 m) presented a significantly higher genome size than those belonging to E. duriaei populations below 1,700 m (2C = 6.20 ± 0.04 vs. 2C = 5.52 ± 0.05 pg). Moreover, the essential oils analyses revealed that most chemical constituents were sesquiterpenes, but relevant differences in the main components were observed: α-neocallitropsene (28–53 %), β-betulenal (8.5–15.8 %) and 14-hydroxy-β-caryophyllene (5.8–13.7 %) were the main compounds of Eryngium duriaei oil below 1,700 m, whereas caryophyllene oxide (47 %) and E-caryophyllene (6 %) were the major compounds of E. duriaei oil of higher altitude populations. The results provide important evidences to support the taxonomic separation of E. duriaei in two taxa: E. duriaei J. Gay ex Boiss. subsp. duriaei and E. duriaei subsp. juresianum (M. Laínz) M. Laínz, as previously considered by this author.  相似文献   
897.
Accumulation of S-adenosylhomocysteine (AdoHcy), the homocysteine (Hcy) precursor and a potent methyltransferase inhibitor, may mediate the neurological and vascular complications associated with elevated Hcy. Protein arginine methylation is a crucial post-translational modification and generates monomethylarginine (MMA) and dimethylarginine (asymmetric, ADMA, and symmetric, SDMA) residues. We aimed at determining whether protein arginine methylation status is disturbed in an animal model of diet-induced hyperhomocysteinemia (HHcy). HHcy was achieved by dietary manipulation of Wistar rats: methionine-enrichment (HM), B vitamins deficiency (LV), or both (HMLV). Total Hcy, S-adenosylmethionine (AdoMet), AdoHcy, MMA, ADMA and SDMA concentrations in plasma or tissues (heart, brain and liver) were determined by adequate high-performance liquid chromatography or liquid chromatography-electrospray ionization-tandem mass spectrometry methods. Moreover, in tissues from the HMLV group, histone arginine asymmetric dimethylation was evaluated by Western blotting, and the histone methylation marks H3R17me2a, H3R8me2a and H4R3me2a were studied. HHcy was induced by all special diets, with elevation of AdoHcy concentrations in liver (LV and HMLV) and heart (HMLV) (all versus control). Plasma ADMA levels were lower in all hyperhomocysteinemic animals. Protein-incorporated ADMA levels were decreased in brain and in heart (both for the LV and HMLV groups). Moreover, in brain of animals exposed to the HMLV diet, the H3R8me2a mark was profoundly decreased. In conclusion, our results show that diet-induced Hcy elevation disturbs global protein arginine methylation in a tissue-specific manner and affects histone arginine methylation in brain. Future research is warranted to disclose the functional implications of the global protein and histone arginine hypomethylation triggered by Hcy elevation.  相似文献   
898.
899.
In a previous study, we reported depressor and bradycardiac responses after L-glutamate (L-glu) microinjection into the diagonal band of Broca (dbB) in anesthetized rats. Here, we report the glutamatergic-receptor subtype mediating the cardiovascular effects evoked by L-glu injection into the dbB and the involvement of local nitric oxide (NO) mechanisms as well as peripheral effectors. Microinjections of 100 nL of L-glu (1, 27, 81, 130 or 200 nmol) into the dbB of urethane-anesthetized rats caused short-lasting depressor and bradycardiac responses. Responses were dose-related, with an ED(50) of approximately 81 nmol. This dose was used in later experiments. The cardiovascular responses to L-glu in the dbB were abolished by local pretreatment (100 nL) with the selective N-methyl-D-aspartic acid (NMDA) receptor antagonist LY235959 (4 nmol) but were not affected by pretreatment with the selective non-NMDA receptor antagonist NBQX (4 nmol). Responses to L-glu in the dbB were blocked by local pretreatment with the selective neuronal NO-synthase (nNOS) inhibitor N(omega)-propyl-L-arginine (NPLA, 0.04 nmol); the NO scavenger carboxy-PTIO (C-PTIO, 1 nmol) or the guanylate cyclase inhibitor ODQ (1 nmol). These results suggest that the microinjection of L-glu into the dbB of urethane-anesthetized rats causes dose-related depressor and bradycardiac responses through the NMDA receptor-NO-guanylate cyclase pathway.  相似文献   
900.
Certain extracellular proteins produced by several pathogenic microorganisms interfere with the host immune system facilitating microbial colonization and were thus designated virulence-associated immunomodulatory proteins. In this study, a protein with B lymphocyte stimulatory activity was isolated from culture supernatants of Streptococcus agalactiae strain NEM316. This protein, with an apparent molecular mass of 45 kDa, was identified as GAPDH by N-terminal amino acid sequencing. The gapC gene was cloned and expressed in Escherichia coli for the production of a recombinant histidyl-tagged protein. The recombinant GAPDH (rGAPDH), purified in an enzymatically active form, induced in vitro an up-regulation of CD69 expression on B cells from normal and BCR transgenic mice. In addition, rGAPDH induced an increase in the numbers of total, but not of rGAPDH-specific, splenic Ig-secreting cells in C57BL/6 mice treated i.p. with this protein. These in vitro- and in vivo-elicited B cell responses suggest that the B cell stimulatory effect of rGAPDH is independent of BCR specificity. A S. agalactiae strain overexpressing GAPDH showed increased virulence as compared with the wild-type strain in C57BL/6 mice. This virulence was markedly reduced in IL-10-deficient and anti-rGAPDH antiserum-treated mice. These results suggest that IL-10 production, which was detected at higher concentrations in the serum of rGAPDH-treated mice, is important in determining the successfulness of the host colonization by S. agalactiae and they highlight the direct role of GAPDH in this process. Taken together, our data demonstrate that S. agalactiae GAPDH is a virulence-associated immunomodulatory protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号