全文获取类型
收费全文 | 427篇 |
免费 | 42篇 |
国内免费 | 1篇 |
专业分类
470篇 |
出版年
2023年 | 2篇 |
2021年 | 4篇 |
2020年 | 17篇 |
2019年 | 40篇 |
2018年 | 29篇 |
2017年 | 4篇 |
2016年 | 8篇 |
2015年 | 8篇 |
2014年 | 8篇 |
2013年 | 23篇 |
2012年 | 7篇 |
2011年 | 5篇 |
2010年 | 10篇 |
2009年 | 8篇 |
2008年 | 18篇 |
2007年 | 21篇 |
2006年 | 21篇 |
2005年 | 11篇 |
2004年 | 2篇 |
2003年 | 8篇 |
2002年 | 13篇 |
2001年 | 20篇 |
2000年 | 6篇 |
1999年 | 13篇 |
1998年 | 16篇 |
1997年 | 8篇 |
1996年 | 19篇 |
1995年 | 16篇 |
1994年 | 5篇 |
1993年 | 11篇 |
1992年 | 12篇 |
1991年 | 4篇 |
1990年 | 4篇 |
1989年 | 15篇 |
1988年 | 2篇 |
1987年 | 4篇 |
1985年 | 3篇 |
1984年 | 5篇 |
1983年 | 4篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 6篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1976年 | 4篇 |
1974年 | 2篇 |
1965年 | 2篇 |
1925年 | 1篇 |
1923年 | 1篇 |
1922年 | 2篇 |
排序方式: 共有470条查询结果,搜索用时 15 毫秒
21.
Up-regulation of microsphere transport across the follicle-associated epithelium of Peyer's patch by exposure to Streptococcus pneumoniae R36a. 总被引:5,自引:0,他引:5
H M Meynell N W Thomas P S James J Holland M J Taussig C Nicoletti 《FASEB journal》1999,13(6):611-619
Transport of antigens through the follicle-associated epithelium (FAE) of Peyer's patch (PP) is the critical first step in the induction of mucosal immune responses. We have previously described that short-term exposure to Streptococcus pneumoniae R36a induced dramatic morphological alterations of the FAE in rabbit PP. These results prompted us to investigate whether the pneumococci-induced modifications were accompanied by enhanced ability of the FAE to transport antigens. We addressed this problem by evaluating the ability of the FAE to bind, internalize, and transport fluorescent polystyrene microparticles, highly specific to rabbit M cells, after exposure to S. pneumoniae. Quantitative study revealed a marked increase in the number of microspheres in PP tissues exposed to S. pneumoniae compared to tissues exposed to either phosphate-buffered saline or Escherichia coli DH5alpha as controls. No sign of bacterially induced damage to the epithelial barrier was observed. Further confocal microscopy analysis of the FAE surface showed that a significant increase in the number of cells that showed both morphological and functional features of M cells took place within pneumococci-treated PP tissues. These data provide the first direct evidence that the FAE-specific antigen sampling function may be manipulated to improve antigen and drug delivery to the intestinal immune system. 相似文献
22.
Ying-Chun Liang MD Yu-Peng Wu MD Xiao-Dong Li MD Shao-Hao Chen MD Xiao-Jian Ye MD Xue-Yi Xue MD Ning Xu MD 《Journal of cellular physiology》2019,234(12):23243-23255
The effective treatment of urethral stricture remains a medical problem. The use of proinflammatory cytokines as stimuli to improve the reparative efficacy of mesenchymal stem cells (MSCs) towards damaged tissues represents an evolving field of investigation. However, the therapeutic benefits of this strategy in the treatment of urethral stricture remain unknown. Here, we enriched exosomes derived from human umbilical cord-derived MSCs pretreated with or without tumor necrosis factor alpha (TNF-α) to evaluate their therapeutic effects in an in vivo model of TGFβ1-induced urethral stricture. Male Sprague-Dawley rats received sham (saline) or TGFβ1 injections to urethral tissues followed by incisions in the urethra. Animals in the TGFβ1 injection (urethral fibrosis) cohort were subsequently injected with vehicle control, or with exosomes derived from MSCs cultured with or without TNF-α. After 4 weeks, rats underwent ultrasound evaluation and, following euthanasia, urethral tissues were harvested for histological and molecular analysis. In vitro, the effects of MSC-derived exosomes on fibroblast secretion of collagen and cytokines were studied by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. Exosomes derived from MSCs pretreated with TNF-α were more effective in suppressing urethral fibrosis and stricture than exosomes from untreated MSCs. We found that miR-146a, an anti-inflammatory miRNA, was strongly upregulated in TNF-α-stimulated MSCs and was selectively packaged into exosomes. Moreover, miR-146a-containing exosomes were taken up by fibroblasts and inhibited fibroblast activation and associated inflammatory responses, a finding that may underlie the therapeutic mechanism for suppression of urethral stricture. Inhibition of miR-146a in TNF-α-treated MSCs partially reduced antifibrotic effects and increased the release of proinflammatory factors of exosomes derived from these cells. Together these findings demonstrate that exosomes derived from TNF-α-treated MSCs are of therapeutic benefit in urethral fibrosis, suggesting that this strategy may have utility as an adjuvant therapy in the treatment of urethral stricture diseases. 相似文献
23.
24.
A cancer microenvironment generates strong hydrogen bond network system by the positive feedback loops supporting cancer complexity and robustness. Such network functions through the AKT locus generating high entropic energy supporting cancer metastatic robustness. Charged lepton particle muon follows the rule of Bragg effect during a collision with hydrogen network in cancer cells. Muon beam dismantles hydrogen bond network in cancer by the muon-catalyzed fusion, leading to apoptosis of cancer cells. Muon induces cumulative energy appearance on the hydrogen bond network in a cancer cell with its fast decay to an electron and two neutrinos. Thus, muon beam, muonic atom, muon neutrino shower, and electrons simultaneously cause fast neutralization of the AKT hydrogen bond network by the conversion of hydrogen into deuterium or helium, inactivating the hydrogen bond networks and inducing failure of cancer complexity and robustness with the disappearance of a malignant phenotype. 相似文献
25.
Scott JK Huang SF Gangadhar BP Samoriski GM Clapp P Gross RA Taussig R Smrcka AV 《The EMBO journal》2001,20(4):767-776
To understand the requirements for binding to G protein betagamma subunits, phage-displayed random peptide libraries were screened using immobilized biotinylated betagamma as the target. Selected peptides were grouped into four different families based on their sequence characteristics. One group (group I) had a clear conserved motif that has significant homology to peptides derived from phospholipase C beta (PLC beta) and to a short motif in phosducin that binds to G protein beta subunits. The other groups had weaker sequence homologies or no homology to the group I sequences. A synthetic peptide from the strongest consensus group blocked activation of PLC by G protein betagamma subunits. The peptide did not block betagamma-mediated inhibition of voltage-gated calcium channels and had little effect on betagamma-mediated inhibition of Gs-stimulated type I adenylate cyclase. Competition experiments indicated that peptides from all four families bound to a single site on betagamma. These peptides may bind to a protein-protein interaction 'hot spot' on the surface of betagamma subunits that is used by a subclass of effectors. 相似文献
26.
Larval cuticle ofHelicoverpa (Heliothis)zea and yeast extract added to a minimal medium (MM) induced germination of conidia ofNomuraea rileyi whereas sterile distilled water or MM alone did not. Yeast extract increased mycelial yield, but when cuticle was added, mycelial yield significantly decreased. Proteases and chitinases ofN. rileyi were only expressed when cuticle was added to the MM.This article reports the results of research only. Mention of a proprietary product in this paper does not constitute a recommendation for use by US Department of Agriculture. 相似文献
27.
Lei Peng-Cheng Takashi Yoshiike Hitoshi Yaguchi Hideoki Ogawa MD PhD 《Mycopathologia》1993,122(2):89-93
Defense mechanisms againstSporothrix schenckii were studied using mouse models. After an intracutaneous injection of the yeast form ofS. schenckii to the dorsal skin of the congenitally athymic nude and normal heterozygote littermate mice, nodules were formed. They regressed and disappeared in 10 weeks in the case of normal mice. On the other hand, nodules and then ulceration developed progressively in nude mice until all animals expired by dissemination of microorganisms at the 11th week of inoculation. Histopathologically the migrated cells were similar in both the normal and the nude mice, particularly during the early phase (within 24 h), with infiltration by PMNs being predominant. Fragmentation ofS. schenckii commenced early during the 12–24 h stage of inoculation in the normal mice, while such fragmentation was scarce in nude mice even though numerous PMNs accumulated. Microscopic observations in the early stages (within 24 h of inoculation) suggested that the lack of killing activity by PMNs in nude mice contributes more to the impaired defense than the lack of macrophage activation by T-cells. 相似文献
28.
Naeem Khan Asghari Bano Muhammad Adnan Shahid Wajid Nasim MD Ali Babar 《Biologia》2018,73(11):1083-1098
Drought is one of the key restraints to agricultural productivity worldwide and is expected to increase further. Drought stress accompanied by reduction in precipitation pose major challenges to future food safety. Strategies should be develop to enhance drought tolerance in crops like chickpea and wheat, in order to enhance their growth and yield. Drought tolerance strategies are costly and time consuming however, recent studies specify that plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGRs) can help plants to withstand under harsh environmental condition and enable plants to cope with drought stress. PGPR can act as biofertilizer and bioenhancer for different legumes and non-legumes. The use of PGPR and symbiotic microorganisms, may be valuable in developing strategies to assist water conservation in plants. The use of PGPR has been confirmed to be an ecologically sound way of enhancing crop yields by facilitating plant growth through direct or indirect mechanism. The mechanisms of PGPR for water conservation include secretion of exopolysaccharides, biofilm formation, alternation in phytohormone content, improvement in sugar concentration, enhancing availability of micro- and macronutrients and changes in plant functional traits. Similarly, plant growth regulators (PGRs) are specially noticed in actively growing tissues under stress conditions and have been associated in the control of cell division, embryogenesis, root formation, fruit development and ripening, and reactions to biotic and abiotic stresses and upholding water conservation status in plants. Previous studies also suggest that plant metabolites interact with plant physiology under stress condition and impart drought tolerance. Metabolites like, sugars, amino acids, organic acid and polyols play a key role in drought tolerance of crop plants grown under stress condition. It is concluded from the present study that PGRs in combination with PGPR consortium can be an effective formulation to promote plant growth and maintenance of plant turgidity under drought stress. This review is a compilation of the effect of drought stress on crop plants and described interactions between PGPR/PGRs and plant development, knowledge of water conservation and stress release strategies of PGPR and PGRs and the role of plant metabolites in drought tolerance of crop plants. This review also bridges the gaps that summarizes the mechanism of action of PGPR for drought tolerance of crop plants and sustainability of agriculture and applicability of these beneficial rhizobacteria in different agro-ecosystems under drought stress. 相似文献
29.
Background: A preponderance of evidence indicates that when treatment of hyperglycemia with insulin is provided for certain hospitalized populations, the attainment of appropriate glycemic targets improves nonglycemic outcomes such as mortality rates, morbidities (eg, wound infection, critical illness polyneuropathy, bacteremia, new renal insufficiency), duration of ventilator dependency, transfusion requirements, and length of hospital stay. Nevertheless, randomized controlled trials (RCTs) of intensive insulin therapy and studies of outcomes before and after implementation of tight glycemic control have consistently recognized an increased incidence of hypoglycemia as a complication associated with the use of lower glycemic targets and higher doses of insulin.Objectives: This commentary compares the quality of the available evidence on the clinical impact of iatrogenic hypoglycemia. We present treatment strategies designed to prevent iatrogenic hypoglycemia in the hospital setting.Methods: The PubMed database and online citations of articles tracked subsequent to publication were searched for articles on the epidemiology, clinical impact, and mechanism of harm of hypoglycemia published since 1986. In addition, we searched the literature for RCTs conducted since 2001 concerning intensive insulin therapy in the hospital critical care setting, including meta-analyses; letters to the editor were excluded. The retrieved studies were scanned and chosen selectively for full-text review based on the study size and design, novelty of findings, and evidence related to the possible clinical impact of hypoglycemia. Reference lists from the retrieved studies were searched for additional studies. Reports were summarized for the purpose of comparing and contrasting the qualitative nature of information about iatrogenic hypoglycemia in the hospital.Results: Eight RCTs of intensive glycemic management, 16 observational studies of hospitalized patients with hypoglycemia (including studies of outcomes before and after implementation of tight glycemic control), and 4 case reports on patients with hypoglycemia were selected for discussion of the incidence of hypoglycemia, significance of hypoglycemia as a marker or cause of poor prognosis, and clinical harm of hypoglycemia. Hypoglycemia was identified in clinical trials as either a category of adverse events or a complication of intensified insulin treatment. For example, a recent meta-analysis found that the incidence of severe hypoglycemia was higher among critically ill patients treated with intensive insulin therapy than among control patients, with a pooled relative risk of 6.0 (95% CI, 4.5–8.0). In the largest multisite RCT on glycemic control among patients in intensive care units (ICUs) conducted to date, deaths were reported for 27.5% (829/3010 patients) in the intensive-treatment group and 24.9% (751/3012 patients) in the conventional-treatment group (odds ratio, 1.14; 95% CI, 1.02–1.28; P = 0.02). In another multisite ICU study, although the intensive and control groups had similar mortality rates, the mortality rate was higher among hypoglycemic participants than among nonhypoglycemic participants (32.2% vs 13.6%, respectively; P < 0.01). Pooled data from 2 singlesite studies in medical and surgical ICUs revealed an increased risk of hypoglycemia in the intensive-treatment group compared with the conventional-treatment group (11.3% [154/1360] and 1.8% [25/1388], respectively; P < 0.001), but the hospital mortality rate was similar for the 2 groups (50.6% [78/154] and 52.0% [13/25], respectively). Specific sequelae of hypoglycemia affecting individual patients were described in the RCTs as well as in the observational studies. New guidelines for glycemic control have recently been issued, but results of the studies using the new targets are not yet available. We propose treatment strategies designed to prevent iatrogenic hypoglycemia in the hospital setting.Conclusions: In response to the growing evidence on the risk of hypoglycemia during intensified glycemic management of hospitalized patients, professional organizations recently revised targets for glycemic control. It is appropriate for institutions to reevaluate hospital protocols for glycemic management with intravenous insulin and, on general wards, to implement standardized order sets for use of subcutaneous insulin to achieve beneficial targets using safe strategies. 相似文献
30.