首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   99篇
  2023年   3篇
  2022年   20篇
  2021年   26篇
  2020年   21篇
  2019年   19篇
  2018年   27篇
  2017年   28篇
  2016年   45篇
  2015年   48篇
  2014年   59篇
  2013年   71篇
  2012年   105篇
  2011年   106篇
  2010年   68篇
  2009年   54篇
  2008年   106篇
  2007年   103篇
  2006年   94篇
  2005年   70篇
  2004年   87篇
  2003年   69篇
  2002年   49篇
  2001年   5篇
  2000年   6篇
  1999年   8篇
  1998年   14篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1988年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1367条查询结果,搜索用时 31 毫秒
41.
42.
Plant cysteine-rich peptides (CRPs) represent a diverse group of molecules involved in different aspects of plant physiology. Antimicrobial peptides, which directly suppress the growth of pathogens, are regarded as promising templates for the development of next-generation pharmaceuticals and ecologically friendly plant disease control agents. Their oligopeptide fragments are even more promising because of their low production costs. The goal of this work was to explore the antimicrobial activity of nine short peptides derived from the γ-core-containing regions of tomato CRPs against important plant and human pathogens. We discovered antimicrobial activity in peptides derived from the defensin-like peptides, snakins, and MEG, which demonstrates the direct involvement of these CRPs in defense reactions in tomato. The CRP-derived short peptides appeared particularly active against the gram-positive bacterium Clavibacter michiganensis, which causes bacterial wilt—opening up new possibilities for their use in agriculture to control this dangerous disease. Furthermore, high inhibitory potency of short oligopeptides was demonstrated against the yeast Cryptococcus neoformans, which causes serious diseases in humans, making these peptide molecules promising candidates for the development of next-generation pharmaceuticals. Studies of the mode of action of the two most active peptides indicate fungal membrane permeabilization as a mechanism of antimicrobial action.  相似文献   
43.
Agricultural expansion encroaches on tropical forests and primates in such landscapes frequently incorporate crops into their diet. Understanding the nutritional drivers behind crop-foraging can help inform conservation efforts to improve human-primate coexistence. This study builds on existing knowledge of primate diets in anthropogenic landscapes by estimating the macronutrient content of 24 wild and 11 cultivated foods (90.5% of food intake) consumed by chimpanzees (Pan troglodytes verus) at Bossou, Guinea, West Africa. We also compared the macronutrient composition of Bossou crops to published macronutrient measures of crops from Bulindi, Uganda, East Africa. The composition of wild fruits, leaves, and pith were consistent with previous reports for primate diets. Cultivated fruits were higher in carbohydrates and lower in insoluble fiber than wild fruits, while wild fruits were higher in protein. Macronutrient content of cultivated pith fell within the ranges of consumed wild pith. Oil palm food parts were relatively rich in carbohydrates, protein, lipids, and/or fermentable fiber, adding support for the nutritional importance of the oil palm for West African chimpanzees. We found no differences in the composition of cultivated fruits between Bossou and Bulindi, suggesting that macronutrient content alone does not explain differences in crop selection. Our results build on the current understanding of chimpanzee feeding ecology within forest-agricultural mosaics and provide additional support for the assumption that crops offer primates energetic benefits over wild foods.  相似文献   
44.
45.
Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation and elongation of filopodia along neurite shafts and growth cone. Netrin-1-induced filopodia formation was dependent upon Ena/VASP function and directly correlated with Ena/VASP phosphorylation at a regulatory PKA site. Accordingly, Ena/VASP function was required for filopodial formation from the growth cone in response to global PKA activation. We propose that Ena/VASP proteins control filopodial dynamics in neurons by remodeling the actin network in response to guidance cues.  相似文献   
46.
The cpn60 and cpn10 genes from psychrophilic bacterium, Oleispira antarctica RB8, showed a positive effect in Escherichia coli growth at low temperature, shifting its theoretical minimal growth temperature from +7.5 degrees C to -13.7 degrees C [Ferrer, M., Chernikova, T.N., Yakimov, M., Golyshin, P.N., and Timmis, K.N. (2003) Nature Biotechnol 21: 1266-1267]. To provide experimental support for this finding, Cpn60 and 10 were overproduced in E. coli and purified to apparent homogeneity. Recombinant O.Cpn60 was identical to the native protein based on tetradecameric structure, and it dissociates during native PAGE. Gel filtration and native PAGE revealed that, in vivo and in vitro, (O.Cpn60)(7) was the active oligomer at 4-10 degrees C, whereas at > 10 degrees C, this complex was converted to (O.Cpn60)(14). The dissociation reduces the ATP consumption (energy-saving mechanism) and increases the refolding capacity at low temperatures. In order for this transition to occur, we demonstrated that K468 and S471 may play a key role in conforming the more advantageous oligomeric state in O.Cpn60. We have proved this hypothesis by showing that single and double mutations in K468 and S471 for T and G, as in E.GroEL, produced a more stable double-ring oligomer. The optimum temperature for ATPase and chaperone activity for the wild-type chaperonin was 24-28 degrees C and 4-18 degrees C, whereas that for the mutants was 45-55 degrees C and 14-36 degrees C respectively. The temperature inducing unfolding (T(M)) increased from 45 degrees C to more than 65 degrees C. In contrast, a single ring mutant, O.Cpn60(SR), with three amino acid substitutions (E461A, S463A and V464A) was as stable as the wild type but possessed refolding activity below 10 degrees C. Above 10 degrees C, this complex lost refolding capacity to the detriment of the double ring, which was not an efficient chaperone at 4 degrees C as the single ring variant. We demonstrated that expression of O.Cpn60(WT) and O.Cpn60(SR) leads to a higher growth of E. coli at 4 degrees C ( micro (max), 0.22 and 0.36 h(-1) respectively), whereas at 10-15 degrees C, only E. coli cells expressing O.Cpn60 or O.Cpn60(DR) grew better than parental cells (-cpn). These results clearly indicate that the single-to-double ring transition in Oleispira chaperonin is a wild-type mechanism for its thermal acclimation. Although previous studies have also reported single-to-double ring transitions under many circumstances, this is the first clear indication that single-ring chaperonins are necessary to support growth when the temperature falls from 37 degrees C to 4 degrees C.  相似文献   
47.
A new principle for expression of heat-sensitive recombinant proteins in Escherichia coli at temperatures close to 4 degrees C was experimentally evaluated. This principle was based on simultaneous expression of the target protein with chaperones (Cpn60 and Cpn10) from a psychrophilic bacterium, Oleispira antarctica RB8(T), that allow E. coli to grow at high rates at 4 degrees C (maximum growth rate, 0.28 h(-1)). The expression of a temperature-sensitive esterase in this host at 4 to 10 degrees C yielded enzyme specific activity that was 180-fold higher than the activity purified from the non-chaperonin-producing E. coli strain grown at 37 degrees C (32,380 versus 190 micromol min(-1) g(-1)). We present evidence that the increased specific activity was not due to the low growth temperature per se but was due to the fact that low temperature was beneficial to folding, with or without chaperones. This is the first report of successful use of a chaperone-based E. coli strain to express heat-labile recombinant proteins at temperatures below the theoretical minimum growth temperature of a common E. coli strain (7.5 degrees C).  相似文献   
48.
A series of novel azacyclic urea HIV protease inhibitors bearing a benzenesulfonamide group at P1' were synthesized utilizing a parallel synthesis method. Structural studies of early analogs bound in the enzyme active site were used to design more potent inhibitors. The effects of substituting the P1' benzenesulfonyl group on antiviral activity and protein binding are described.  相似文献   
49.
We have shown that bacteria injected intravenously into live animals entered and replicated in solid tumors and metastases. The tumor-specific amplification process was visualized in real time using luciferase-catalyzed luminescence and green fluorescent protein fluorescence, which revealed the locations of the tumors and metastases. Escherichia coli and three attenuated pathogens (Vibrio cholerae, Salmonella typhimurium, and Listeria monocytogenes) all entered tumors and replicated. Similarly, the cytosolic vaccinia virus also showed tumor-specific replication, as visualized by real-time imaging. These findings indicate that neither auxotrophic mutations, nor vaccinia virus deficient for the thymidine kinase gene, nor anaerobic growth conditions were required for tumor specificity and intratumoral replication. We observed localization of tumors by light-emitting microorganisms in immunocompetent and in immunocompromised rodents with syngeneic and allogeneic tumors. Based on their 'tumor-finding' nature, bacteria and viruses may be designed to carry multiple genes for detection and treatment of cancer.  相似文献   
50.
Isolated mitochondria of Saccharomyces cerevisiae cells grown on glucose possess acid-soluble inorganic polyphosphate (polyP). Its level strongly depends on phosphate (P(i)) concentration in the culture medium. The polyP level in mitochondria showed 11-fold decrease under 0.8 mM P(i) as compared with 19.3 mM P(i). When spheroplasts isolated from P(i)-starved cells were incubated in the P(i)-complete medium, they accumulated polyP and exhibited a phosphate overplus effect. Under phosphate overplus the polyP level in mitochondria was two times higher than in the complete medium without preliminary P(i) starvation. The average chain length of polyP in mitochondria was of <15 phosphate residues at 19.3 mM P(i) in the culture medium and increased at phosphate overplus. Deoxyglucose inhibited polyP accumulation in spheroplasts, but had no effect on polyP accumulation in mitochondria. Uncouplers (FCCP, dinitrophenol) and ionophores (monensin, nigericin) inhibited polyP accumulation in mitochondria more efficiently than in spheroplasts. Fast hydrolysis of polyP was observed after sonication of isolated mitochondria. Probably, the accumulation of polyP in mitochondria depended on the proton-motive force of their membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号