首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1361篇
  免费   100篇
  国内免费   1篇
  1462篇
  2023年   4篇
  2022年   24篇
  2021年   26篇
  2020年   21篇
  2019年   19篇
  2018年   27篇
  2017年   29篇
  2016年   47篇
  2015年   49篇
  2014年   59篇
  2013年   73篇
  2012年   106篇
  2011年   109篇
  2010年   72篇
  2009年   56篇
  2008年   110篇
  2007年   109篇
  2006年   100篇
  2005年   78篇
  2004年   89篇
  2003年   72篇
  2002年   52篇
  2001年   8篇
  2000年   13篇
  1999年   14篇
  1998年   15篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   5篇
  1991年   7篇
  1990年   10篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1965年   1篇
排序方式: 共有1462条查询结果,搜索用时 15 毫秒
81.
Agricultural expansion encroaches on tropical forests and primates in such landscapes frequently incorporate crops into their diet. Understanding the nutritional drivers behind crop-foraging can help inform conservation efforts to improve human-primate coexistence. This study builds on existing knowledge of primate diets in anthropogenic landscapes by estimating the macronutrient content of 24 wild and 11 cultivated foods (90.5% of food intake) consumed by chimpanzees (Pan troglodytes verus) at Bossou, Guinea, West Africa. We also compared the macronutrient composition of Bossou crops to published macronutrient measures of crops from Bulindi, Uganda, East Africa. The composition of wild fruits, leaves, and pith were consistent with previous reports for primate diets. Cultivated fruits were higher in carbohydrates and lower in insoluble fiber than wild fruits, while wild fruits were higher in protein. Macronutrient content of cultivated pith fell within the ranges of consumed wild pith. Oil palm food parts were relatively rich in carbohydrates, protein, lipids, and/or fermentable fiber, adding support for the nutritional importance of the oil palm for West African chimpanzees. We found no differences in the composition of cultivated fruits between Bossou and Bulindi, suggesting that macronutrient content alone does not explain differences in crop selection. Our results build on the current understanding of chimpanzee feeding ecology within forest-agricultural mosaics and provide additional support for the assumption that crops offer primates energetic benefits over wild foods.  相似文献   
82.
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.  相似文献   
83.
Agonist stimulation of exocrine cells leads to the generation of intracellular Ca(2+) signals driven by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) that rapidly become global due to propagation throughout the cell. In many types of excitable cells the intracellular Ca(2+) signal is propagated by a mechanism of Ca(2+)-induced Ca(2+) release (CICR), mediated by ryanodine receptors (RyRs). Expression of RyRs in salivary gland cells has been demonstrated immunocytochemically although their functional role is not clear. We used microfluorimetry to measure Ca(2+) signals in the cytoplasm, in the endoplasmic reticulum (ER) and in mitochondria. In permeabilized acinar cells caffeine induced a dose-dependent, transient decrease of Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)). This decrease was inhibited by ryanodine but was insensitive to heparin. Application of caffeine, however, did not elevate cytosolic Ca(2+) concentration ([Ca(2+)](i)) suggesting fast local buffering of Ca(2+) released through RyRs. Indeed, activation of RyRs produced a robust mitochondrial Ca(2+) transient that was prevented by addition of Ca(2+) chelator BAPTA but not EGTA. When mitochondrial Ca(2+) uptake was blocked, activation of RyRs evoked only a non-transient increase in [Ca(2+)](i) and substantially smaller Ca(2+) release from the ER. Upon simultaneous inhibition of mitochondrial Ca(2+) uptake and either plasmalemmal or ER Ca(2+) ATPase, activation of RyRs caused a transient rise in [Ca(2+)](i). Collectively, our data suggest that Ca(2+) released through RyRs is mostly "tunnelled" to mitochondria, while Ca(2+) ATPases are responsible for the fast initial sequestration of Ca(2+). Ca(2+) uptake by mitochondria is critical for maintaining continuous CICR. A complex interplay between RyRs, mitochondria and Ca(2+) ATPases is accomplished through strategic positioning of mitochondria close to both Ca(2+) release sites in the ER and Ca(2+) pumping sites of the plasmalemma and the ER.  相似文献   
84.
Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS.  相似文献   
85.
Mitochondria-targeted antioxidants consisting of a quinone part conjugated with a lipophilic cation via a hydrocarbon linker were previously shown to prevent oxidative damage to mitochondria in vitro and in vivo. In the present work, we studied the permeation of a series of compounds of this type across a planar bilayer phospholipid membrane. For this purpose, relaxation of the electrical current after a voltage jump was measured. With respect to the characteristic time of the relaxation process reflecting the permeation rate, hydrophobic cations can be ranked in the following series: 10(plastoquinonyl) decylrhodamine 19 (SkQR1) > 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SkQ1) > 10-(6'-methylplastoquinonyl) decyltriphenylphosphonium (SkQ3) > 10-(6'-ubiquinonyl) decyltriphenylphosphonium (MitoQ). Thus, the permeation rate increased with (1) an increase in the size of the hydrophobic cation and (2) an increase in hydrophobicity of the quinone moiety. SkQ1 containing plastoquinone was shown to be more permeable through the membrane compared to MitoQ containing ubiquinone, which might be the reason for more pronounced beneficial action of SkQ1 in vitro and in vivo. The above approach can be recommended for the search for new antioxidants or other compounds targeted to mitochondria.  相似文献   
86.
87.
88.
89.
90.
Fused in sarcoma (FUS) belongs to the group of RNA-binding proteins implicated as underlying factors in amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. Multiple FUS gene mutations have been linked to hereditary forms, and aggregation of FUS protein is believed to play an important role in pathogenesis of these diseases. In cultured cells, FUS variants with disease-associated amino acid substitutions or short deletions affecting nuclear localization signal (NLS) and causing cytoplasmic mislocalization can be sequestered into stress granules (SGs). We demonstrated that disruption of motifs responsible for RNA recognition and binding not only prevents SG recruitment, but also dramatically increases the protein propensity to aggregate in the cell cytoplasm with formation of juxtanuclear structures displaying typical features of aggresomes. Functional RNA-binding domains from TAR DNA-binding protein of 43 kDa (TDP-43) fused to highly aggregation-prone C-terminally truncated FUS protein restored the ability to enter SGs and prevented aggregation of the chimeric protein. Truncated FUS was also able to trap endogenous FUS molecules in the cytoplasmic aggregates. Our data indicate that RNA binding and recruitment to SGs protect cytoplasmic FUS from aggregation, and loss of this protection may trigger its pathological aggregation in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号