首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1314篇
  免费   100篇
  2023年   5篇
  2022年   24篇
  2021年   27篇
  2020年   22篇
  2019年   20篇
  2018年   29篇
  2017年   29篇
  2016年   49篇
  2015年   48篇
  2014年   63篇
  2013年   73篇
  2012年   106篇
  2011年   107篇
  2010年   72篇
  2009年   54篇
  2008年   109篇
  2007年   106篇
  2006年   95篇
  2005年   71篇
  2004年   87篇
  2003年   69篇
  2002年   51篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   15篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   4篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1414条查询结果,搜索用时 15 毫秒
21.
Microtubules and their associated proteins play important roles in vesicle and organelle transport, cell motility and cell division. Perturbation of these processes by mutation typically gives rise to severe pathological conditions. In our efforts to obtain atomic information on microtubule-associated protein/microtubule interactions with the goal to understand mechanisms that might potentially assist in the development of treatments for these diseases, we have determined the three-dimensional structure of CAP-Gly (cytoskeleton-associated protein, glycine-rich) domain of mammalian dynactin by magic angle spinning NMR spectroscopy. We observe two conformations in the β2 strand encompassing residues T43-V44-A45, residues that are adjacent to the disease-associated mutation, G59S. Upon binding of CAP-Gly to microtubule plus-end tracking protein EB1, the CAP-Gly shifts to a single conformer. We find extensive chemical shift perturbations in several stretches of residues of CAP-Gly upon binding to EB1, from which we define accurately the CAP-Gly/EB1 binding interface. We also observe that the loop regions may exhibit unique flexibility, especially in the GKNDG motif, which participates in the microtubule binding. This study in conjunction with our previous reports suggests that conformational plasticity is an intrinsic property of CAP-Gly likely due to its unusually high loop content and may be required for its biological functions.  相似文献   
22.
Dysfunction of two structurally and functionally related proteins, FUS and TAR DNA-binding protein of 43 kDa (TDP-43), implicated in crucial steps of cellular RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. The proteins are intrinsically aggregate-prone and form non-amyloid inclusions in the affected nervous tissues, but the role of these proteinaceous aggregates in disease onset and progression is still uncertain. To address this question, we designed a variant of FUS, FUS 1–359, which is predominantly cytoplasmic, highly aggregate-prone, and lacks a region responsible for RNA recognition and binding. Expression of FUS 1–359 in neurons of transgenic mice, at a level lower than that of endogenous FUS, triggers FUSopathy associated with severe damage of motor neurons and their axons, neuroinflammatory reaction, and eventual loss of selective motor neuron populations. These pathological changes cause abrupt development of a severe motor phenotype at the age of 2.5–4.5 months and death of affected animals within several days of onset. The pattern of pathology in transgenic FUS 1–359 mice recapitulates several key features of human ALS with the dynamics of the disease progression compressed in line with shorter mouse lifespan. Our data indicate that neuronal FUS aggregation is sufficient to cause ALS-like phenotype in transgenic mice.  相似文献   
23.
24.
The vegetative growth of Ulva lactuca was studied to determine if the growth rate of the alga is driven by infradian rhythmicity. The influence of temperature on the infradian rhythm of growth was also investigated. Discs of Ulva were grown in controlled laboratory conditions at different combinations of temperature (5, 10, 15, 20°С) and irradiance (40 and 60 μmol photons m?2 s?1) under 12 : 12 h light : dark cycles. The growth rates exhibited a rhythmic pattern with one major peak every 2 or 3 days. Growth at 5 or 10°С increased the prevalence of 3-day cycles and maintained U. lactuca in the vegetative growth stage. In contrast, growth at 15 or 20°С provoked a predominance of the 2-day cycle and induced reproduction. The 2- or 3-day cycles were combined in longer cycles having a period close to 6 days. We suppose that the 2-, 3- and 6-day rhythms of physiological processes are related to large-scale Rossby and Kelvin waves, which produce oscillations in the geomagnetic field and seawater temperature with the same periods. The predominance of 2-day or 3-day fluctuations of the geomagnetic field and temperature probably determine the prevalence of reproduction and vegetative growth, respectively, in Ulva.  相似文献   
25.
The positive regulation of insulin pathway in skeletal muscle results in increased activity of the mammalian target of rapamycin (mTOR), a positive effector of mRNA translation rate and protein synthesis. Studies that assess the activity of this protein in response to chronic high-fat diet (HFD) are scarce and controversial, and to date, there are no studies evaluating the mTOR pathway in infants exposed to gestational and postgestational HFD. This study investigated the effect of maternal HFD on skeletal muscle morphology and on phosphorylation of proteins that comprise the intracellular mTOR signaling pathway in soleus muscle of offspring at weaning. For this purpose, 10 days prior to conception, 39 female Wistar rats were randomly assigned to either control diet (CTL) or HFD. Later, rats were distributed into four groups according to gestational and postpregnancy diet: CTL/CTL (n=10), CTL/HF (n=11), HF/HF (n=10) and HF/CTL (n=8). After 21 days of lactation, pups were killed, and blood samples and soleus and gastrocnemius skeletal muscle were collected for analysis. We observed an influence of maternal postgestational diet, rather than gestational diet, in promoting an obese phenotype, characterized by body fat accumulation, insulin resistance and high serum leptin, glucose, triglycerides and cholesterol levels (P<.05). We have also detected alterations on skeletal muscle morphology — with reduced myofiber density — and impairment on S6 kinase 1 and 4E binding protein-1 phosphorylation (P<.05). These results emphasize the importance of maternal diet during lactation on muscle morphology and on physiological adaptations of infant rats.  相似文献   
26.
27.
28.

Background

Nothing is currently known about microbial composition of saline lakes of the Novosibirsk region and its dependence on physical-chemical parameters of waters. We studied the structure of microbial communities of saline lakes of the Novosibirsk region and the effect of physical-chemical parameters of waters on microbial communities of these lakes.

Results

According to the ion content, the lakes were classified either as chloride or chloride-sulfate types. Water salinity ranges from 4.3 to 290 g L?1. Many diverse microbial communities were found. Filamentous and colonial Cyanobacteria of the genera Scytonema, Aphanocapsa, and/or filamentous Algae dominated in littoral communities. Spatial and temporal organization of planktonic microbial communities and the quantities of Archaea and Bacteria were investigated using fluorescent in situ hybridization. We have found that the dominant planktonic component is represented by Archaea, or, less frequently, by Bacteria. Various phylogenetic groups (Bacteria, Archaea, Algae, and Cyanobacteria) are nonuniformly distributed. The principal component analysis was used to detect environmental factors that affect microorganism abundance. We found the principal components responsible for 71.1 % of the observed variation. It was demonstrated that two-block partial least squares was a better method than principal component analysis for analysis of the data. We observed general relationships between microbial abundance and water salinity.

Conclusions

We have performed the first-ever study of the structure of the microbial communities of eleven saline lakes in the Novosibirsk region along with their physical-chemical parameters of waters. Our study demonstrates that saline lakes in the Novosibirsk region contain a unique microbial communities that may become a prolific source of microorganisms for fundamental and applied studies in various fields of ecology, microbiology, geochemistry, and biotechnology, and deserve further metagenomic investigation.
  相似文献   
29.
We investigated the effects of weak combined magnetic fields (MFs) produced by superimposing a constant MF (in the range 30 - 150 µT) and an alternating MF (100 or 200 nT) on cytokine production in healthy Balb/C male mice exposed 2 h daily for 14 days. The alternating magnetic field was a sum of several frequencies (ranging from 2.5 - 17.5 Hz). The frequencies of the alternating magnetic field were calculated formally based on the cyclotron resonance of ions of free amino acids (glutamic and aspartic acids, arginine, lysine, histidine, and tyrosine). The selection of different intensity and frequency combinations of constant and alternating magnetic fields was performed to find the optimal characteristics for cytokine production stimulation in immune cells. MF with a constant component of 60 μT and an alternating component of 100 nT, which was a sum of six frequencies (from 5 to 7 Hz), was found to stimulate the production of tumor necrosis factor-α, interferon-gamma, interleukin-2, and interleukin-3 in healthy mouse cells and induce cytokine accumulation in blood plasma. Then, we studied the effect of this MF on tumor-bearing mice with solid tumors induced by Ehrlich ascite carcinoma cells by observing tumor development processes, including tumor size, mouse survival rate, and average lifespan. Tumor-bearing mice exposed to a combined constant magnetic field of 60 μT and an alternating magnetic field of 100 nT containing six frequencies showed a strong suppression of tumor growth with an increase in survival rate and enhancement of average lifespan.  相似文献   
30.
Relatively little is known about the genetic aberrations of conjunctival melanomas (CoM) and their correlation with clinical and histomorphological features as well as prognosis. The aim of this large collaborative multicenter study was to determine potential key biomarkers for metastatic risk and any druggable targets for high metastatic risk CoM. Using Affymetrix single nucleotide polymorphism genotyping arrays on 59 CoM, we detected frequent amplifications on chromosome (chr) 6p and deletions on 7q, and characterized mutation‐specific copy number alterations. Deletions on chr 10q11.21‐26.2, a region harboring the tumor suppressor genes, PDCD4, SUFU, NEURL1, PTEN, RASSF4, DMBT1, and C10orf90 and C10orf99, significantly correlated with metastasis (Fisher's exact, p ≤ 0.04), lymphatic invasion (Fisher's exact, p ≤ 0.02), increasing tumor thickness (Mann–Whitney, p ≤ 0.02), and BRAF mutation (Fisher's exact, p ≤ 0.05). This enhanced insight into CoM biology is a step toward identifying patients at risk of metastasis and potential therapeutic targets for systemic disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号