首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3008篇
  免费   129篇
  3137篇
  2022年   26篇
  2021年   51篇
  2020年   19篇
  2019年   34篇
  2018年   56篇
  2017年   35篇
  2016年   62篇
  2015年   113篇
  2014年   116篇
  2013年   165篇
  2012年   209篇
  2011年   203篇
  2010年   136篇
  2009年   109篇
  2008年   173篇
  2007年   190篇
  2006年   177篇
  2005年   135篇
  2004年   201篇
  2003年   178篇
  2002年   152篇
  2001年   42篇
  2000年   42篇
  1999年   40篇
  1998年   24篇
  1997年   24篇
  1996年   22篇
  1995年   17篇
  1994年   25篇
  1993年   13篇
  1992年   26篇
  1991年   23篇
  1990年   26篇
  1989年   15篇
  1988年   18篇
  1987年   20篇
  1986年   9篇
  1985年   12篇
  1984年   13篇
  1983年   15篇
  1982年   17篇
  1981年   11篇
  1980年   16篇
  1979年   10篇
  1976年   17篇
  1975年   12篇
  1974年   16篇
  1973年   9篇
  1972年   10篇
  1970年   9篇
排序方式: 共有3137条查询结果,搜索用时 0 毫秒
101.
Nuclease P1 cleaved substantially all phosphodiester bonds in rRNA, tRNA, poly(I), poly(U), poly(A), poly(C), poly(G), poly(I)·poly(C), native DNA and heat-denatured DNA to produce exclusively 5′-mononucleotides. Single-stranded polynucleotides were much more susceptible than double-stranded ones. Influence of pH and ionic strength on the hydrolysis rate significantly varied with the kind of polynucleotides. The enzyme also hydrolyzed 3′-phosphomonoester bonds in 3′-AMP, 3′-GMP, 3′-UMP, 3′-CMP, 3′-dAMP, 3′-dGMP, 3′-dCMP and 3′-dTMP. Ribonucleoside 3′-monophosphates were hydrolyzed 20 to 50 times faster than the corresponding 3′-deoxyribonucleotides. Base preference of the enzyme for 3′-ribonucleotides was in the order of G>A>C≧U, whereas that for 3′-deoxyribo-nucleotides was in the order of C≧T>A≧G. The 3′-phosphomonoester bonds in nucleoside 3′, 5′-diphosphates, coenzyme A and dinucleotides bearing 3′-phosphate were hydrolyzed at a rate similar to that for the corresponding 3′-mononucleotides. Adenosine 2′-monophosphate was highly resistant, being split at less than 1/3,000 the rate at which 3′-AMP was split.  相似文献   
102.
The mechanism whereby Escherichia coli K12 accumulates orotic acid in culture fluid was studied. Pyrimidine compounds were incorporated effectively into cells of E. coli K12, stimulated the growth, and depressed the accumulation; while purine compounds were not so much consumed by the microorganism for its growth, and affected the accumulation to a lesser extent. On the other hand, E. coli B unable to accumulate orotic acid utilized less effectively pyrimidine compounds for its growth than strain K12.

It is supposed, therefore, that in the de novo pathway for pyrimidine synthesis in E. coli K12 the step from orotic acid to 5′-UMP is genetically depressed so that orotic acid is accumulated when pyrimidine compounds, that would cause a feedback inhibition of orotic acid synthesis upon incorporation, are not supplemented.  相似文献   
103.
Sixteen 2′→5′ dinucleotides; (2′–5′)pA-A, pA-G, pA-C, pA-U, pG-A, pG-G, pG-C, pG-U, pC-A, pC-G, pC-C, pC-U, pU-A, pU-G, pU-C, and pU-U were detected in nuclease P1 digest of a technical grade yeast RNA by means of gel filtration on Sephadex G-10, DEAE-Sephadex A-25 column chromatography in the presence of 7 m urea, paper electrophoresis and paper chromatography. Content of each dinucleotide was about 0.1 to 0.6% of the digest. As the sixteen 2′→5′ dinucleotides were found in all of the digests of technical grade RNA preparations tested, each polynucleotide chain in the preparations may be concluded to contain several per cent of the 2′–5′ minor phosphodiester linkages in addition to the 3′–5′ major phosphodiester linkages.  相似文献   
104.
Nuclease P1 from Penicillium citrinum was found to be produced in a form of complex with malonogalactan (a galactan, 1, 5-β-galactofuranoside polymer esterfied with malonic acid at position 3) in the culture on wheat bran. Neither nuclease P1-malonogalactan complex nor malonogalactan was produced in a liquid medium. Nuclease P1-malonogalactan complexes, P1-MG I, II, and III were purified from an aqueous extract of the culture on wheat bran. The most anionic complex, P1-MG III, was composed of the protein, carbohydrate and malonic acid in the ratio of 1: 2.6: 0.5 (w/w). The complex was not dissociated by purification procedures including fractionations with acetone and ammonium sulfate, gel filtration and DEAE-cellulose chromatography. A malonogalactan-specific carboxylesterase was found in culture of the same mold on wheat bran. Nuclease P1-malonogalactan was demalonylated by the esterase to yield nuclease P1-galactan. The binding of nuclease P1 to galactan was rather loose so that nuclease P1-galactan complex was partially dissociated by DEAE-cellulose chromatography. Attempt to reconstitute the complex from nuclease P1 and malonogalactan upon mixing was unsuccessful. Exogenously supplemented nuclease P1 did not associate with malonogalactan in the growing culture on wheat bran, either.

Several extracellular enzymes such as RNase, β-galactosidase and protease were also found in a form of complex with malonogalactan in the culture on wheat bran.  相似文献   
105.
106.
107.
Indirect reciprocity is one of the major mechanisms of the evolution of cooperation. Because constant monitoring and accurate evaluation in moral assessments tend to be costly, indirect reciprocity can be exploited by cost evaders. A recent study crucially showed that a cooperative state achieved by indirect reciprocators is easily destabilized by cost evaders in the case with no supportive mechanism. Here, we present a simple and widely applicable solution that considers pre-assessment of cost evaders. In the pre-assessment, those who fail to pay for costly assessment systems are assigned a nasty image that leads to them being rejected by discriminators. We demonstrate that considering the pre-assessment can crucially stabilize reciprocal cooperation for a broad range of indirect reciprocity models. In particular for the most leading social norms, we analyse the conditions under which a prosocial state becomes locally stable.  相似文献   
108.
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号