首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2744篇
  免费   147篇
  2023年   6篇
  2022年   24篇
  2021年   49篇
  2020年   20篇
  2019年   33篇
  2018年   58篇
  2017年   37篇
  2016年   63篇
  2015年   103篇
  2014年   112篇
  2013年   144篇
  2012年   201篇
  2011年   206篇
  2010年   128篇
  2009年   105篇
  2008年   182篇
  2007年   191篇
  2006年   163篇
  2005年   148篇
  2004年   191篇
  2003年   164篇
  2002年   134篇
  2001年   39篇
  2000年   46篇
  1999年   39篇
  1998年   21篇
  1997年   22篇
  1996年   21篇
  1995年   18篇
  1994年   23篇
  1993年   13篇
  1992年   21篇
  1991年   22篇
  1990年   14篇
  1989年   6篇
  1988年   14篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1984年   7篇
  1983年   8篇
  1982年   12篇
  1981年   8篇
  1979年   7篇
  1978年   7篇
  1975年   4篇
  1974年   3篇
  1972年   3篇
  1967年   3篇
  1966年   3篇
排序方式: 共有2891条查询结果,搜索用时 15 毫秒
951.
952.
Two nonribosomal peptide synthetase genes responsible for the biosynthesis of microcystin and micropeptin in Microcystis aeruginosa K-139 have been identified. A new nonribosomal peptide synthetase gene, psm3, was identified in M. aeruginosa K-139. The gene is a cluster extending 30 kb and comprising 13 bidirectionally transcribed open reading frames arranged in two putative operons. psm3 encodes four adenylation proteins, one polyketide synthase, and several unique proteins, especially Psm3L consisting of halogenase, acyl-CoA binding protein-like protein, and acyl carrier protein. Alignment of the binding pocket of the adenylation domain and an ATP-PPi exchange analysis using a recombinant protein with the adenylation domain of Psm3B showed that Psm3G and Psm3B activate aspartic acid and tyrosine, respectively. Although disruption of psm3 did not reveal the product produced by Psm3, we identified microviridin B and aeruginosin K139 in the cells of M. aeruginosa K-139. The above-mentioned results indicated that M. aeruginosa possesses at least five nonribosomal peptide synthetase gene clusters.  相似文献   
953.
A novel LAGLIDADG-type homing endonuclease (HEase), I-Tsp061I, from the hyperthermophilic archaeon Thermoproteus sp. IC-061 16 S rRNA gene (rDNA) intron was characterized with respect to its structure, catalytic properties and thermostability. It was found that I-Tsp061I is a HEase isoschizomer of the previously described I-PogI and exhibits the highest thermostability among the known LAGLIDADG-type HEases. Determination of the crystal structure of I-Tsp061I at 2.1 A resolution using the multiple isomorphous replacement and anomalous scattering method revealed that the overall fold is similar to that of other known LAGLIDADG-type HEases, despite little sequence similarity between I-Tsp061I and those HEases. However, I-Tsp061I contains important cross-domain polar networks, unlike its mesophilic counterparts. Notably, the polar network Tyr6-Asp104-His180-107O-HOH12-104O-Asn177 exists across the two packed alpha-helices containing both the LAGLIDADG catalytic motif and the GxxxG hydrophobic helix bundle motif. Another important structural feature is the salt-bridge network Asp29-Arg31-Glu182 across N and C-terminal domain interface, which appears to contribute to the stability of the domain/domain packing. On the basis of these structural analyses and extensive mutational studies, we conclude that such cross-domain polar networks play key roles in stabilizing the catalytic center and domain packing, and underlie the hyperthermostability of I-Tsp061I.  相似文献   
954.
Protein kinase C-epsilon (epsilonPKC) induces neurite outgrowth in neuroblastoma cells but molecular mechanism of the epsilonPKC-induced neurite outgrowth is not fully understood. Therefore, we investigated the ability of phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding of epsilonPKC and its correlation with the neurite extension. We found that full length epsilonPKC bound to PIP(2) in a 12-omicron-tetradecanoylphorbol-13-acetate dependent manner, while the regulatory domain of epsilonPKC (epsilonRD) bound to PIP(2) without any stimulation. To identify the PIP(2) binding region, we made mutants lacking several regions from epsilonRD, and examined their PIP(2) binding activity. The mutants lacking variable region 1 (V1) bound to PIP(2) stronger than intact epsilonRD, while the mutants lacking pseudo-substrate or common region 1 (C1) lost the binding. The PIP(2) binding ability of the V3-deleted mutant was weakened. Those PIP(2) bindings of epsilonPKC, epsilonRD and the mutants well correlated to their neurite induction ability. In addition, a chimera of pleckstrin homology domain of phospholipase Cdelta and the V3 region of epsilonPKC revealed that PIP(2) binding domain and the V3 region are sufficient for the neurite induction, and a first 16 amino acids in the V3 region was important for neurite extension. In conclusion, epsilonPKC directly binds to PIP(2) mainly through pseudo-substrate and common region 1, contributing to the neurite induction activity.  相似文献   
955.
We studied the fertilization dynamics of marine green algae with both analytical methods and numerical simulations. In this study, we focused on a new factor, gametic investment per unit volume of the space in which gametes searched for their partners, and compared the numbers of zygotes formed at lower investments with those at higher investments. As a function of the gametic investment for various anisogamy ratios, we found there was generally a crossover region for each series where, for gametic investments larger than the crossover region, isogamy prevailed with the highest number of zygotes formed, while for gametic investments smaller than the crossover region, anisogamy dominated. These results may explain both the stable maintenance of isogamy in shallow water and the distribution of anisogamous species in deep water, since in shallow water the gametic investments typically exceed this crossover region and vice versa. Comparisons of field data from marine green algae are consistent with this hypothesis. Also, we showed that the cost of sex was approximately twofold in zygote formation when comparing isogamous species with mating types to those without mating types.  相似文献   
956.
957.
958.
Human embryonic stem (ES) cell lines are one of the possible sources of cardiac myocytes to be transplanted in patients with end-staged heart failure. However, prior to the application of human of ES cells for heart failure therapy, it is critical to validate their clinical use in large animals such as primates. Cynomolgus monkey ES cells have similar properties to human ES cells and can be used for primate studies. We demonstrate that 24-h stimulation by a histone deacetylase inhibitor, trichostatin A (TSA) facilitated myocardial differentiation of monkey ES cells with embryonic bodies that were seeded on gelatin-coated dishes. TSA-induced acetylating of histone-3/4 and expression of p300, one of the intrinsic histone acetyltransferases. Thus, such induction as well as inhibition of histone deacetylase may be involved in TSA-induced differentiation of cynomolgus monkey ES cells into cardiomyocytes.  相似文献   
959.
ADAMTS13 is gaining attention, because its deficiency causes thrombotic thrombocytopenic purpura. Although its regulatory mechanism is not fully understood, we wondered if hepatic stellate cells (HSCs) play a role, because ADAMTS13 mRNA is exclusively expressed in the liver and primarily in HSCs. Plasma ADAMTS13 activity was markedly reduced in dimethylnitrosamine-treated rats, where HSC apoptosis is an essential event, but not in carbon tetrachloride- or thioacetamide-treated rats without HSC apoptosis. Furthermore, plasma ADAMTS13 activity was also reduced in 70% hepatectomized rats, where HSC loss occurs. These results suggest that HSC may be involved in the regulation of plasma ADAMTS13 activity.  相似文献   
960.
Hiura H  Komiyama J  Shirai M  Obata Y  Ogawa H  Kono T 《FEBS letters》2007,581(7):1255-1260
Mouse genomes show a large cluster of imprinted genes at the Dlk1-Gtl2 domain in the distal region of chromosome 12. An intergenic-differentially methylated region (IG-DMR) located between Dlk1 and Gtl2 is specifically methylated in the male germline; IG-DMR regulates the parental allele-specific expression of imprinted genes. Here, we show the resetting of IG-DMR methylation marks during male germ-cell differentiation. For parental allele-specific methylation analysis, polymorphisms were detected in a 2.6-kb IG-DMR in three mouse strains. Bisulfite methylation analysis showed erasure of the marks by E14 and re-establishment before birth. The IG-DMR methylation status was maintained in spermatogonia and spermatocytes of mature testes. The IG-DMR methylation status established before birth is thus maintained throughout the lifetime in the male germline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号