首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2365篇
  免费   112篇
  2477篇
  2023年   6篇
  2022年   23篇
  2021年   43篇
  2020年   16篇
  2019年   29篇
  2018年   48篇
  2017年   28篇
  2016年   55篇
  2015年   97篇
  2014年   102篇
  2013年   110篇
  2012年   180篇
  2011年   186篇
  2010年   119篇
  2009年   87篇
  2008年   156篇
  2007年   172篇
  2006年   147篇
  2005年   122篇
  2004年   177篇
  2003年   150篇
  2002年   108篇
  2001年   27篇
  2000年   23篇
  1999年   26篇
  1998年   17篇
  1997年   16篇
  1996年   16篇
  1995年   17篇
  1994年   17篇
  1993年   11篇
  1992年   11篇
  1991年   12篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   10篇
  1986年   11篇
  1985年   7篇
  1984年   8篇
  1983年   7篇
  1982年   10篇
  1981年   8篇
  1980年   4篇
  1979年   4篇
  1978年   9篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
排序方式: 共有2477条查询结果,搜索用时 0 毫秒
41.
42.
In this study, the level of genetic diversity of captive populations of the itasenpara bitterling (Acheilognathus longipinnis) was assessed to obtain information useful for successful captive breeding and reintroduction; this analysis was performed using mitochondrial DNA (mtDNA) sequence data. Comparison of the captive and wild populations showed low levels of genetic diversity within the captive population and significant genetic differentiation among the captive populations and also between the wild and captive populations, suggesting at chance effect during the founding process for the captive population and a subsequent genetic drift. Therefore, for successful reintroduction, it is important that the reintroduced population reflects all the genetic diversity available from the captive populations, and that releasing a large number of individuals that consist of all captive populations.  相似文献   
43.
Programmed cell death (PCD) is the genetically regulated disassembly of cells, and occurs in the endosperm of cereals during seed maturation. Since PCD determines the lifetime of cells, it can affect endosperm growth and, therefore, cereal yield. However, the features and mechanisms of PCD in the developing starchy endosperm in the Poaceae remain unclear. In the present study, we investigated the characteristics of PCD in developing starchy endosperm of rice (Oryza sativa L.) by fluorescence microscopy, focusing on the spatial and temporal progress of PCD-associated responses. Cell death commenced in the central region of starchy endosperm, and then spread to the peripheral region. PCD-associated responses, such as mitochondrial membrane permeabilization and activation of the protease that cleaves the amino acid sequence VEID, showed similar spatial patterns to that of cell death, but preceded cell death. Degradation of nuclear DNA could not be detected in developing starchy endosperm by the TUNEL assay. These results indicated that PCD in developing starchy endosperm of rice proceeds via a highly organized pattern. In addition, these results suggested that PCD in developing starchy endosperm of rice is characterized by the involvement of mitochondrial signaling and the activity of a caspase-like protease that cleaves the VEID sequence.  相似文献   
44.
Type I collagen extracted from tendon, skin, and bone of wild type and prolyl 3-hydroxylase 1 (P3H1) null mice shows distinct patterns of 3-hydroxylation and glycosylation of hydroxylysine residues. The A1 site (Pro-986) in the α1-chain of type I collagen is almost completely 3-hydroxylated in every tissue of the wild type mice. In contrast, no 3-hydroxylation of this proline residue was found in P3H1 null mice. Partial 3-hydroxylation of the A3 site (Pro-707) was present in tendon and bone, but absent in skin in both α-chains of the wild type animals. Type I collagen extracted from bone of P3H1 null mice shows a large reduction in 3-hydroxylation of the A3 site in both α-chains, whereas type I collagen extracted from tendon of P3H1 null mice shows little difference as compared with wild type. These results demonstrate that the A1 site in type I collagen is exclusively 3-hydroxylated by P3H1, and presumably, this enzyme is required for the 3-hydroxylation of the A3 site of both α-chains in bone but not in tendon. The increase in glycosylation of hydroxylysine in P3H1 null mice in bone was found to be due to an increased occupancy of normally glycosylated sites. Despite the severe disorganization of collagen fibrils in adult tissues, the D-period of the fibrils is unchanged. Tendon fibrils of newborn P3H1 null mice are well organized with only a slight increase in diameter. The absence of 3-hydroxyproline and/or the increased glycosylation of hydroxylysine in type I collagen disturbs the lateral growth of the fibrils.  相似文献   
45.
A NADPH-dependent (S)-imine reductase (SIR) was purified to be homogeneous from the cell-free extract of Streptomyces sp. GF3546. SIR appeared to be a homodimer protein with subunits of 30.5 kDa based on SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It also catalyzed the (S)-enantioselective reduction of not only 2-methyl-1-pyrroline (2-MPN) but also 1-methyl-3,4-dihydroisoquinoline and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline. Specific activities for their imines were 130, 44, and 2.6 nmol?min?1?mg?1, and their optical purities were 92.7 % ee, 96.4 % ee, and >99 % ee, respectively. Using a NADPH-regenerating system, 10 mM 2-MPN was converted to amine with 100 % conversion and 92 % ee after 24 h. The amino acid sequence analysis revealed that SIR showed about 60 % identity to 6-phosphogluconate dehydrogenase. However, it showed only 37 % identity with Streptomyces sp. GF3587 (R)-imine reductase. Expression of SIR in Escherichia coli was achieved, and specific activity of the cell-free extract was about two times higher than that of the cell-free extract of Streptomyces sp. GF3546.  相似文献   
46.
The effect of various reagents on the formation and stability of heat-induced gels of sesame 13S globulins were investigated. Electrostatic interaction, the hydrophobic bond and the disulfide bond were important for forming the network structure of gels, and the hydrogen bond also had an influence on the formation of the gel. Hydrophobic bonds mainly contributed to the stability of the gel. Subunit analyses of the proteins solubilized from the gels showed the presence of a free acidic subunit (AS) and basic subunit (BS), a polymer of AS, a dimer of BS and the dimer of a fragment from AS or BS. From the results, sulfhydryl-disulfide exchange reactions during gelation are suggested.  相似文献   
47.
6-Phenyl- and 5-phenyl-2-pyrazinecarbonitriles with or without a propylamino group at the 3-, 5- or 6-position of the pyrazine ring were prepared together with some related compounds from the corresponding 2,3-pyrazinedicarbonitriles. Their herbicidal activities against barnyardgrass and broadleaf weeds were examined in pot tests. The 6-phenyl-2-pyrazinecarbonitriles were relatively potent compared with the 5-phenyl derivatives. Moreover, the presence of a propylamino group at the 5-position of the 6-phenyl-2-pyrazinecarbonitriles was closely related to an increase in activity.  相似文献   
48.
49.
50.
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号