首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2461篇
  免费   142篇
  2603篇
  2023年   7篇
  2022年   23篇
  2021年   46篇
  2020年   15篇
  2019年   29篇
  2018年   49篇
  2017年   29篇
  2016年   56篇
  2015年   97篇
  2014年   106篇
  2013年   115篇
  2012年   186篇
  2011年   183篇
  2010年   119篇
  2009年   95篇
  2008年   163篇
  2007年   169篇
  2006年   147篇
  2005年   123篇
  2004年   183篇
  2003年   154篇
  2002年   112篇
  2001年   31篇
  2000年   19篇
  1999年   27篇
  1998年   19篇
  1997年   16篇
  1996年   21篇
  1995年   20篇
  1994年   19篇
  1993年   9篇
  1992年   11篇
  1991年   20篇
  1990年   17篇
  1989年   6篇
  1988年   7篇
  1987年   9篇
  1986年   9篇
  1985年   7篇
  1984年   15篇
  1983年   16篇
  1982年   15篇
  1981年   16篇
  1980年   8篇
  1979年   13篇
  1978年   10篇
  1976年   7篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
排序方式: 共有2603条查询结果,搜索用时 15 毫秒
51.
In fission yeast, meiotic mono-orientation of sister kinetochores is established by cohesion at the core centromere, which is established by a meiotic cohesin complex and the kinetochore protein Moa1. The cohesin subunit Psm3 is acetylated by Eso1 and deacetylated by Clr6. We show that in meiosis, Eso1 is required for establishing core centromere cohesion during S phase, whereas Moa1 is required for maintaining this cohesion after S phase. The clr6-1 mutation suppresses the mono-orientation defect of moa1Δ cells, although the Clr6 target for this suppression is not Psm3. Thus, several acetylations are crucial for establishing and maintaining core centromere cohesion.  相似文献   
52.
Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community.  相似文献   
53.
In vitro reconstitution of the end replication problem   总被引:3,自引:0,他引:3       下载免费PDF全文
The end replication problem hypothesis proposes that the ends of linear DNA cannot be replicated completely during lagging strand DNA synthesis. Although the idea has been widely accepted for explaining telomere attrition during cell proliferation, it has never been directly demonstrated. In order to take a biochemical approach to understand how linear DNA ends are replicated, we have established a novel in vitro linear simian virus 40 DNA replication system. In this system, terminally biotin-labeled linear DNAs are conjugated to avidin-coated beads and subjected to replication reactions. Linear DNA was efficiently replicated under optimized conditions, and replication products that had replicated using the original DNA templates were specifically analyzed by purifying bead-bound replication products. By exploiting this system, we showed that while the leading strand is completely synthesized to the end, lagging strand synthesis is gradually halted in the terminal approximately 500-bp region, leaving 3' overhangs. This result is consistent with observations in telomerase-negative mammalian cells and formally demonstrates the end replication problem. This study provides a basis for studying the details of telomere replication.  相似文献   
54.
The gap junction proteins connexin32 (Cx32), Cx37, Cx40, and Cx43 are expressed in endothelial cells, and regulate vascular functions involving inflammation, vasculogenesis and vascular remodeling. Aberrant Cxs expression promotes the development of atherosclerosis which is modulated by angiogenesis; however the role played by endothelial Cxs in angiogenesis remains unclear. In this study, we determined the effects of endothelial Cxs, particularly Cx32, on angiogenesis. EA.hy926 cells that had been transfected to overexpress Cx32 significantly increased capillary length and the number on branches compared to Cx-transfectant cells over-expressing Cx37, Cx40, and Cx43 or mock-treated cells. Treatment via intracellular transfer of anti-Cx32 antibody suppressed tube formation of human umbilical vein endothelial cells (HUVECs) compared to controls. In vitro wound healing assays revealed that Cx32-transfectant cells significantly increased the repaired area while anti-Cx32 antibody-treated HUVECs reduced it. Ex vivo aorta ring assays and in vivo matrigel plaque assays showed that Cx32-deficient mice impaired both vascular sprouting from the aorta and cell migration into the implanted matrigel. Therefore endothelial Cx32 facilitates tube formation, wound healing, vascular sprouting, and cell migration. Our results suggest that endothelial Cx32 positively regulates angiogenesis by enhancing endothelial cell tube formation and cell migration.  相似文献   
55.
56.
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.  相似文献   
57.
58.
59.
A complete deletion mutant of the Escherichia coli dnaKdnaJ operon   总被引:1,自引:0,他引:1  
Southern hydridization analyses of genomic DNAs from various dnaJ mutants of Escherichia coli showed that mutant K7052, which has well characterized dnaK706 and dnaJ705 double mutantions, is a deletion mutant. The deletion is about 8.0 kb long and encompasses the whole of the dnaKdnaJ operon.  相似文献   
60.
The binding between [24-3H]okadaic acid (OA) and a recombinant OA binding protein OABP2.1 was examined using various OA analog, including methyl okadaate, norokadanone, 7-deoxy OA, and 14,15-dihydro OA, 7-O-palmitoyl DTX1, to investigate the structure activity relationship. Among them, 7-O-palmitoyl DTX1, which is one of the diarrhetic shellfish poisoning (DSP) toxins identified in shellfish, displayed an IC50 for [24-3H]OA binding at 51 ± 6.3 nM (Mean ± SD). In addition, a synthetic compound, N-pyrenylmethyl okadamide, exhibited its IC50 at 10 ± 2.9 nM (Mean ± SD). These results suggested that the recombinant OABP2.1 and the N-pyrenylmethyl okadamide might be core substances in a novel assay for the DSP toxins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号