首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2456篇
  免费   142篇
  2023年   6篇
  2022年   19篇
  2021年   46篇
  2020年   15篇
  2019年   29篇
  2018年   49篇
  2017年   29篇
  2016年   56篇
  2015年   97篇
  2014年   106篇
  2013年   115篇
  2012年   186篇
  2011年   183篇
  2010年   119篇
  2009年   95篇
  2008年   163篇
  2007年   169篇
  2006年   147篇
  2005年   123篇
  2004年   183篇
  2003年   154篇
  2002年   112篇
  2001年   31篇
  2000年   19篇
  1999年   27篇
  1998年   19篇
  1997年   16篇
  1996年   21篇
  1995年   20篇
  1994年   19篇
  1993年   9篇
  1992年   11篇
  1991年   20篇
  1990年   17篇
  1989年   6篇
  1988年   7篇
  1987年   9篇
  1986年   9篇
  1985年   7篇
  1984年   15篇
  1983年   16篇
  1982年   15篇
  1981年   16篇
  1980年   8篇
  1979年   13篇
  1978年   10篇
  1976年   7篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
排序方式: 共有2598条查询结果,搜索用时 573 毫秒
191.
Lipid droplets (LDs) function as intracellular storage depots of neutral lipids. Recently, we identified long-chain acyl-coenzyme A synthetase 3 (ACSL3) as a major LD-associated protein in the human hepatocyte cell line HuH7. In this study, we investigated whether droplet-associated ACSL is involved in lipid metabolism in LDs. Addition of oleic acid (OA) to culture medium was shown to enhance the intracellular accumulation of LDs in the cells, which was accompanied by an increase of droplet ACSL3. When LD-enriched cells induced by OA were further incubated without OA for 3 days, approximately 80% of LDs were retained in the cells. Conversely, cellular LD content was greatly decreased after the addition of an ACSL inhibitor, triacsin C. This was accompanied by a concomitant decrease of the droplet ACSL3. Incubation of isolated LD fractions with (14)C-labeled OA or palmitic acid resulted in [(14)C]acyl-CoA generation in vitro, indicating the presence of ACSL activity in LDs. The droplet ACSL activity varied according to the quantity of LDs in their emergence and disappearance in cells. Incubation of the LD fraction with [(14)C]oleoyl-CoA resulted in radioactive triacylglycerol and cholesteryl esters. These results suggest that LD ACSL activity is involved in local synthesis of neutral lipids and LD formation.  相似文献   
192.
Although in vitro replication of the hepatitis C virus (HCV) JFH1 clone of genotype 2a (HCVcc) has been developed, a robust cell culture system for the 1a and 1b genotypes, which are the most prevalent viruses in the world and resistant to interferon therapy, has not yet been established. As a surrogate virus system, pseudotype viruses transiently bearing HCV envelope proteins based on the vesicular stomatitis virus (VSV) and retrovirus have been developed. Here, we have developed a replication-competent recombinant VSV with a genome encoding unmodified HCV E1 and E2 proteins in place of the VSV envelope protein (HCVrv) in human cell lines. HCVrv and a pseudotype VSV bearing the unmodified HCV envelope proteins (HCVpv) generated in 293T or Huh7 cells exhibited high infectivity in Huh7 cells. Generation of infectious HCVrv was limited in some cell lines examined. Furthermore, HCVrv but not HCVpv was able to propagate and form foci in Huh7 cells. The infection of Huh7 cells with HCVpv and HCVrv was neutralized by anti-hCD81 and anti-E2 antibodies and by sera from chronic HCV patients. The infectivity of HCVrv was inhibited by an endoplasmic reticulum alpha-glucosidase inhibitor, N-(n-nonyl) deoxynojirimycin (Nn-DNJ), but not by a Golgi mannosidase inhibitor, deoxymannojirimycin. Focus formation of HCVrv in Huh7 cells was impaired by Nn-DNJ treatment. These results indicate that the HCVrv developed in this study can be used to study HCV envelope proteins with respect to not only the biological functions in the entry process but also their maturation step.  相似文献   
193.
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.  相似文献   
194.
A visualization method for inter-fragment interaction energies (IFIEs) of biopolymers is presented on the basis of the fragment molecular orbital (FMO) method. The IFIEs appropriately illustrate the information about the interaction energies between the fragments consisting of amino acids, nucleotides and other molecules. The IFIEs are usually analyzed in a matrix form called an IFIE matrix. Analyzing the IFIE matrix, we detect important fragments for the function of biomolecular systems and quantify the strength of interaction energies based on quantum chemistry, including the effects of charge transfer, electronic polarization and dispersion force. In this study, by analyzing a protein-DNA complex, we report a visual representation of the IFIE matrix, a so-called IFIE map. We comprehensively examine what information the IFIE map contains concerning structures and stabilities of the protein-DNA complex.  相似文献   
195.
Insulin receptor substrate-1 (IRS-1) is the major substrate of both the insulin receptor and the IGF-1 receptor. In this study, we created IRS-1 transgenic (IRS-1-Tg) mice which express human IRS-1 cDNA under control of the mouse IRS-1 gene promoter. In the IRS-1-Tg mice, IRS-1 mRNA expression was significantly increased in almost all tissues, but its protein expression was increased in very limited tissues (epididymal fat and skeletal muscle). IRS-1-Tg mice showed glucose intolerance and significantly enlarged epididymal fat mass, as well as elevated serum TNF-α concentrations. Importantly insulin signaling was significantly attenuated in the liver of IRS-1-Tg mice, which may contribute to the glucose intolerance. Our results suggest that excess IRS-1 expression may not provide a beneficial impact on glucose homeostasis in vivo.  相似文献   
196.
To investigate why 3-substituted benzamide derivatives show dual inhibition of Abl and Lyn protein tyrosine kinases, we determined their inhibitory activities against Abl and Lyn, carried out molecular modeling, and conducted a structure-activity relationship study with the aid of a newly determined X-ray structure of the Abl/Lyn dual inhibitor INNO-406 (formerly known as NS-187) bound to human Abl. We found that this series of compounds interacted with both kinases in very similar ways, so that they can inhibit both kinases effectively.  相似文献   
197.
Phosphorylation of endogenous inhibitor proteins for type-1 Ser/Thr phosphatase (PP1) provides a mechanism for reciprocal coordination of kinase and phosphatase activities. A myosin phosphatase inhibitor protein CPI-17 is phosphorylated at Thr38 through G-protein-mediated signals, resulting in a >1000-fold increase in inhibitory potency. We show here the solution NMR structure of phospho-T38-CPI-17 with rmsd of 0.36 +/- 0.06 A for the backbone secondary structure, which reveals how phosphorylation triggers a conformational change and exposes an inhibitory surface. This active conformation is stabilized by the formation of a hydrophobic core of intercalated side chains, which is not formed in a phospho-mimetic D38 form of CPI-17. Thus, the profound increase in potency of CPI-17 arises from phosphorylation, conformational change, and hydrophobic stabilization of a rigid structure that poses the phosphorylated residue on the protein surface and restricts its hydrolysis by myosin phosphatase. Our results provide structural insights into transduction of kinase signals by PP1 inhibitor proteins.  相似文献   
198.
199.
Well-known coronary risk factors such as hyperlipidemia, hypertension, smoking, and diabetes are reported to induce the oxidative stress. Under the oxidative stress, low-density lipoprotein (LDL) is oxidatively modified in the vasculature, and formed oxidized LDL induces endothelial dysfunction, expression of adhesion molecules and apoptosis of vascular smooth muscle cells. It has become evident that these cellular responses induced by oxidized LDL are mediated by lectin-like oxidized LDL receptor-1 (LOX-1). LOX-1 was originally identified from cultured aortic endothelial cells as a receptor for oxidized LDL; however, recent investigations revealed that LOX-1 has diverse roles in the host-defense system and inflammatory responses, and it is involved in the pathogenesis of various diseases such as atherosclerosis-based cardiovascular diseases and septic shock. Beside oxidized LDL, LOX-1 recognizes multiple ligands including apoptotic cells, platelets, advanced glycation end products, bacteria, and heat shock proteins (HSPs). The HSPs function as a chaperone to affect protein folding of newly synthesized or denatured proteins. There are accumulating evidences that the HSPs released into the extracellular space have potent biological activities and it may work as a kind of cytokines. It is demonstrated that LOX-1 works as a receptor for HSP70, since it has high affinity for HSP70. The interaction of LOX-1 with HSP70 is involved in the cross-presentation of antigen. Given the potent and wide variety of biological activities, more understanding their interaction provides potential therapeutic strategy for various human diseases.  相似文献   
200.
Chromatin assembly factor-1 (CAF-1), a complex consisting of p150, p60, and p48 subunits, is highly conserved from yeast to humans and facilitates nucleosome assembly of newly replicated DNA in vitro. To investigate roles of CAF-1 in vertebrates, we generated two conditional DT40 mutants, respectively, devoid of CAF-1p150 and p60. Depletion of each of these CAF-1 subunits led to delayed S-phase progression concomitant with slow DNA synthesis, followed by accumulation in late S/G2 phase and aberrant mitosis associated with extra centrosomes, and then the final consequence was cell death. We demonstrated that CAF-1 is necessary for rapid nucleosome formation during DNA replication in vivo as well as in vitro. Loss of CAF-1 was not associated with the apparent induction of phosphorylations of S-checkpoint kinases Chk1 and Chk2. To elucidate the precise role of domain(s) in CAF-1p150, functional dissection analyses including rescue assays were preformed. Results showed that the binding abilities of CAF-1p150 with CAF-1p60 and DNA polymerase sliding clamp proliferating cell nuclear antigen (PCNA) but not with heterochromatin protein HP1-gamma are required for cell viability. These observations highlighted the essential role of CAF-1-dependent nucleosome assembly in DNA replication and cell proliferation through its interaction with PCNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号