首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2435篇
  免费   118篇
  国内免费   1篇
  2023年   5篇
  2022年   16篇
  2021年   46篇
  2020年   17篇
  2019年   27篇
  2018年   48篇
  2017年   28篇
  2016年   58篇
  2015年   94篇
  2014年   102篇
  2013年   112篇
  2012年   186篇
  2011年   194篇
  2010年   125篇
  2009年   96篇
  2008年   165篇
  2007年   168篇
  2006年   151篇
  2005年   125篇
  2004年   184篇
  2003年   151篇
  2002年   114篇
  2001年   26篇
  2000年   22篇
  1999年   24篇
  1998年   13篇
  1997年   17篇
  1996年   15篇
  1995年   16篇
  1994年   19篇
  1993年   12篇
  1992年   9篇
  1991年   12篇
  1990年   10篇
  1989年   9篇
  1988年   6篇
  1987年   20篇
  1986年   13篇
  1985年   12篇
  1984年   7篇
  1983年   8篇
  1982年   15篇
  1981年   7篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1975年   4篇
  1974年   4篇
  1969年   3篇
  1967年   5篇
排序方式: 共有2554条查询结果,搜索用时 31 毫秒
111.
Sotos syndrome (SoS) is characterized by pre- and postnatal overgrowth with advanced bone age; a dysmorphic face with macrocephaly and pointed chin; large hands and feet; mental retardation; and possible susceptibility to tumors. It has been shown that the major cause of SoS is haploinsufficiency of the NSD1 gene at 5q35, because the majority of patients had either a common microdeletion including NSD1 or a truncated type of point mutation in NSD1. In the present study, we traced the parental origin of the microdeletions in 26 patients with SoS by the use of 16 microsatellite markers at or flanking the commonly deleted region. Deletions in 18 of the 20 informative cases occurred in the paternally derived chromosome 5, whereas those in the maternally derived chromosome were found in only two cases. Haplotyping analysis of the marker loci revealed that the paternal deletion in five of seven informative cases and the maternal deletion in one case arose through an intrachromosomal rearrangement, and two other cases of the paternal deletion involved an interchromosomal event, suggesting that the common microdeletion observed in SoS did not occur through a uniform mechanism but preferentially arose prezygotically.  相似文献   
112.
Experimental studies have shown that oxidized low-density lipoprotein (ox-LDL) up-regulates its receptor LOX-1. Both ox-LDL and LOX-1 are expressed in atherosclerotic plaques. Native LDL concentrations are elevated in atherosclerosis, suggesting a reduction in LDL-receptors. We hypothesized that ox-LDL via LOX-1 could influence the expression of LDL-receptors. This study was designed to examine the interaction between ox-LDL, LOX-1, and LDL-receptors in human coronary artery endothelial cells (HCAECs). HCAECs were incubated with ox-LDL (10-80 microg/ml) for 3-24h. Ox-LDL decreased the expression of LDL-receptor in a concentration- and time-dependent fashion. The effects of ox-LDL were mediated by its endothelial receptor LOX-1, since pretreatment of HCAECs with a blocking antibody to LOX-1 (JTX92, 10 microg/ml) prevented the effect of ox-LDL on LDL-receptor expression. The role of LOX-1 was further confirmed by the use of an antisense to LOX-1 mRNA, which also blocked the effect of ox-LDL in LDL-receptor expression. In other experiments, ox-LDL as expected induced superoxide anion generation; and pretreatment of HCAECs with the anti-oxidants trolox and alpha-tocopherol (each 10 microM) inhibited the formation of superoxide anions as well as the down-regulation of LDL-receptor in response to ox-LDL. These studies provide the first evidence that ox-LDL via LOX-1 modulates LDL-receptor expression in HCAECs. The generation of free radicals elicited by ox-LDL may be a key step in this process.  相似文献   
113.
The acute lymphoblastic leukemia cell line CCRF-CEM is sensitive to Ara-C and undergoes apoptosis. In contrast, the chronic myelogenous leukemia (CML) cell line K562 is highly resistant to Ara-C, which causes the cells to differentiate into erythrocytes before undergoing apoptosis. We used cDNA microarrays to monitor the alterations in gene expression in these two cell lines under conditions leading to apoptosis or differentiation. Ara-C-treated CCRF-CEM cells were characterized by a cluster of down-regulated chaperone genes, whereas Ara-C-treated K562 cells were characterized by a cluster of up-regulated hemoglobin genes. In K562 cells, Ara-C treatment induced significant down-regulation of the asparagine synthetase gene, which is involved in resistance to L-asparaginase. Sequential treatment with Ara-C and L-asparaginase had a synergistic effect on the inhibition of K562 cell growth, and combination therapy with these two anticancer agents may prove effective in the treatment of CML, which cannot be cured by either drug alone.  相似文献   
114.
Mizusawa N  Tomo T  Satoh K  Miyao M 《Biochemistry》2003,42(33):10034-10044
The D1 protein of the photosystem II reaction center turns over the most rapidly of all the proteins of the thylakoid membrane under illumination in vivo. In vitro, the D1 protein sustained cleavage in a surface-exposed loop (DE loop) or cross-linking with another reaction center protein, the D2 protein or cytochrome b(559), under illumination. We found that the D1 protein was damaged in essentially the same way in vivo, although the resultant fragments and cross-linked adducts barely accumulated due to digestion by proteases. In vitro studies detected a novel stromal protease(s) that digested the adducts but not the monomeric D1 protein. These observations suggest that, in addition to cleavage, the cross-linking reactions themselves are processes involved in complete degradation of the D1 protein in vivo. Peptide mapping experiments located the cross-linking sites with the D2 protein among residues 226-244, which includes the cross-linking site with cytochrome b(559) [Barbato, R., et al. (1995) J. Biol. Chem. 270, 24032-24037], in the N-terminal part of the DE loop, while N-terminal amino acid sequencing of the fragment located the cleavage site around residue 260 in the C-terminal part of the loop. We propose a model explaining the occurrence of simultaneous cleavage and cross-linking and discuss the mechanisms of complete degradation of the D1 protein in vivo.  相似文献   
115.
2-Methyl-6-(4-methoxyphenyl)imidazo[1,2-a]pyrazin-3(7H)-one (MCLA) is an oxygen-induced chemiluminescent compound. It has been shown that the chemiluminescence can be enhanced by forming a cyclomaltooligosaccharide (cyclodextrin)-bound MCLA, and therefore, in continuation of the survey of the types of cyclodextrins, in this study, MCLA was attached to the secondary hydroxyl face of delta-cyclodextrin, which consists of nine D-glucose units. Although the oxygen-induced chemiluminescence efficiency of delta-cyclodextrin-bound MCLA in a pH 8.0 aqueous phosphate buffer was 12 times greater than that of MCLA, the efficiency was markedly lower than that of gamma-cyclodextrin-bound MCLA, which exhibited the highest chemiluminescence efficiency in the previous investigation. Although fluorescence efficiency and light-emitter formation efficiency for delta-cyclodextrin-bound MCLA were similar to those for gamma-cyclodextrin-bound MCLA, singlet-excited state formation efficiency for delta-cyclodextrin-bound MCLA was lower than that for gamma-cyclodextrin-bound MCLA. This study distinctly indicated the optimum cyclodextrin for construction of greatly luminescent cyclodextrin-bound MCLA is gamma-cyclodextrin.  相似文献   
116.
In this paper, the use of vector-based RNA interference (RNAi) to specifically interfere with gene expression in chick embryos is reported. In ovo electroporation was carried out to transfer a small interfering RNA (siRNA) expression vector into chick embryos. En2 was chosen for the target gene because the family gene, En1, is expressed in a similar pattern. Four sets of 19-mer sequences were designed with the En2 open reading frame region connected to a sequence of short hairpin RNA (shRNA), which exerts siRNA effects after being transcribed, and inserted into pSilencer U6-1.0 vector. En2 and En1 expression were suppressed by the siRNA whose sequence completely matched En2 and En1. Suppression occurred when the siRNA sequence differed by up to two nucleotides from the target sequence. The sequence that differed by four nucleotides from the target gene did not show siRNA effects. One set that completely matched the En2 target did not show siRNA effects, which may be due to location of the siRNA in the target gene. Thus, multiple sets of shRNA must be prepared if we are to consider. This system will greatly contribute to the analysis of function of genes of interest, because the target gene can be silenced in a locally and temporally desired manner.  相似文献   
117.
Phosphodiesterase 3B (PDE3B) gene expression is generally reduced in large adipocytes of obese, insulin-resistant mice. This reduced gene expression is restored by peroxisome proliferator-activated receptor (PPAR) gamma ligands accompanied by a reduced fat cell size. To determine whether PDE3B gene expression is regulated by PPAR gamma itself, we analyzed lean PPAR gamma (+/-) mice with adipocyte size comparable to control PPAR gamma (+/+) mice. In adipocytes of PPAR gamma (+/-) mice, PDE3B mRNA and protein were both reduced to 63% of wild-type levels. Basal PDE activity tended to be decreased to 70% of wild-type levels, and, similarly, insulin-induced PDE activity was significantly decreased to 70%. Thus, PPAR gamma is required for PDE3B gene expression independent of adipocyte size.  相似文献   
118.
119.
Type III Cu ligand, His456 and His458, of Myrothecium verrucaria (MT-1) bilirubin oxidases (BO) [EC 1.3.3.5] were doubly mutated as to Lys, Asp, and Val. In spite of perturbation of the type III Cu centers, these mutants were pale blue or colourless when isolated. However, they became intense blue on reaction with reducing agents such as dithionite, ascorbate, hexacyanoferrate(II), and octacyanotangstate(IV) under air, or with an oxidizing agent such as hexacyanoferrate(III), indicating that they are in mixed forms when expressed in Aspergillus oryzae. His456.458Lys and His456.458Asp mutated as to potential coordinating groups showed weak BO and ferroxidase activities, while His 456.458Val mutated as to non-coordinating groups showed no enzyme activity at all.  相似文献   
120.
Ricin induced apoptotic nuclear morphological changes in mouse macrophage cell line RAW264.7 cells at concentrations sufficient to cause severe protein synthesis inhibition. Ricin also induced the release of tumor necrosis factor-alpha (TNF-alpha) from this cell line in a dose-dependent manner but the profile was bell-shaped. However, the isolated galactose-specific ricin B-chain had no such effects. These results suggest that the receptor-binding of ricin through the B-chain is not enough, and subsequent attack on the intracellular target, i.e., the 28S ribosomal RNA (rRNA), by the A-chain of internalized ricin is required for the effects of ricin. Z-D-CH2-DCB, a caspase family inhibitor, showed potent inhibition of the release of TNF-alpha from RAW264.7 cells as well as blockage of the induction of apoptosis by ricin. Furthermore, SB202190, a specific P38 mitogen-activated protein (MAP) kinase inhibitor that strongly inhibits the release of TNF-alpha, also showed significant inhibition of ricin-induced apoptosis. These results suggest that there may be cross-talk between the pathways leading to the release of TNF-alpha and apoptosis. Time course analysis revealed that the activation of p38 MAP kinase started prior to the induction of TNF-alpha release and apoptosis. Since the activation of p38 MAP kinase in ricin-treated RAW264.7 cells was not prevented by Z-D-CH2-DCB, the activation of p38 MAP kinase may occur upstream of the caspase cascade. Among the other protein synthesis inhibitors examined, modeccin and anisomycin, which can trigger a ribotoxic stress response similar to ricin, induced the release of TNF-alpha, but emetine and cycloheximide did not. These results suggest that the specific attack on the 28S ribosomal RNA and the resulting ribotoxic stress response may trigger the multiple signal transduction pathways through the activation of p38 MAP kinase, which in turn leads to TNF-alpha release and apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号