首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   37篇
  2022年   3篇
  2021年   6篇
  2018年   3篇
  2017年   7篇
  2016年   8篇
  2015年   9篇
  2014年   20篇
  2013年   23篇
  2012年   14篇
  2011年   28篇
  2010年   15篇
  2009年   10篇
  2008年   27篇
  2007年   21篇
  2006年   36篇
  2005年   29篇
  2004年   27篇
  2003年   24篇
  2002年   25篇
  2001年   30篇
  2000年   26篇
  1999年   23篇
  1998年   10篇
  1997年   10篇
  1996年   17篇
  1995年   8篇
  1994年   11篇
  1993年   12篇
  1992年   13篇
  1991年   11篇
  1990年   16篇
  1989年   12篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   15篇
  1983年   10篇
  1982年   7篇
  1981年   11篇
  1979年   11篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1970年   4篇
  1969年   2篇
排序方式: 共有648条查询结果,搜索用时 17 毫秒
71.
We have reported previously that dopamine D2 receptor stimulation activates calcium/calmodulin-dependent protein kinase II (CaMKII) δ3, a CaMKII nuclear isoform, increasing BDNF gene expression. However, the mechanisms underlying that activity remained unclear. Here we report that CaMKIIδ3 is dephosphorylated at Ser332 by protein phosphatase 1 (PP1), promoting CaMKIIδ3 nuclear translocation. Neuro-2a cells transfected with CaMKIIδ3 showed cytoplasmic and nuclear staining, but the staining was predominantly nuclear when CaMKIIδ3 was coexpressed with PP1. Indeed, PP1 and CaMKIIδ3 coexpression significantly increased nuclear CaMKII activity and enhanced BDNF expression. In support of this idea, chronic administration of the dopamine D2 receptor partial agonist aripiprazole increased PP1 activity and promoted nuclear CaMKIIδ3 translocation and BDNF expression in the rat brain substantia nigra. Moreover, aripiprazole treatment enhanced neurite extension and inhibited cell death in cultured dopaminergic neurons, effects blocked by PP1γ knockdown. Taken together, nuclear translocation of CaMKIIδ3 following dephosphorylation at Ser332 by PP1 likely accounts for BDNF expression and subsequent neurite extension and survival of dopaminergic neurons.  相似文献   
72.
73.
The solvent effects of cyclopentyl methyl ether (CPME) on the reaction rates and enzyme enantioselectivity in the enantioselective transesterifications of racemic 6-methyl-5-hepten-2-ol (racemic sulcatol: SUL) and racemic 2,2-dimethyl-1,3-dioxolane-4-methanol (racemic solketal: SOL) with a series of enol esters catalyzed by Pseudomonas cepacia lipase co-lyophilized with cyclodextrins (-, -, -, partially methylated -,and 2,3,6-tri-O-methyl--cyclodextrin: CyD; CyD; CyD; Me1.78 CyD; Me3CyD) were investigated and compared with those in diisopropyl ether (IPE). In the case of SUL, enzyme activities of the co-lyophilizate with Me1.78 CyD in CPME were lower than those in IPE with every acyl source, however, the absolute enantiopreference was shown in the transesterification with vinyl butyrate (VBR) in IPME. When the substrates were SOL and VBR, the enzyme activities in CPME were greatly enhanced as high as 1.6–9.8-fold, while the enantioselectivities in CPME were comparable to those in IPE.Revisions requested 16 December 2004; Revisions received 17 January 2005  相似文献   
74.
Fukunaga K  Ichitani K  Taura S  Sato M  Kawase M 《Hereditas》2005,142(2005):38-44
We determined the sequence of ribosomal DNA (rDNA) intergenic spacer (IGS) of foxtail millet isolated in our previous study, and identified subrepeats in the polymorphic region. We also developed a PCR-based method for identifying rDNA types based on sequence information and assessed 153 accessions of foxtail millet. Results were congruent with our previous works. This study provides new findings regarding the geographical distribution of rDNA variants. This new method facilitates analyses of numerous foxtail millet accessions. It is helpful for typing of foxtail millet germplasms and elucidating the evolution of this millet.  相似文献   
75.
The reactivity of immobilized glucose oxidase-containing liposomes (IGOL) prepared in our previous work (Wang et al. [2003] Biotechnol Bioeng 83:444-453) was considerably improved here by incorporating the channel protein OmpF from Escherichia coli into the liposome membrane as well as by entrapping inside the liposome's aqueous interior not only glucose oxidase (GO), but also catalase (CA), both from Aspergillus niger. CA was used for decomposing the hydrogen peroxide produced in the glucose oxidation reaction inside the liposomes. The presence of OmpF enhanced the transport of glucose molecules from the exterior of the liposomes to the interior. In a first step of the work, liposomes containing GO and CA (GOCAL) were prepared and characterized. A remarkable protection effect of the liposome membrane on CA inside the liposomes at 40 degrees C was found; the remaining CA activity at 72 h incubation was more than 60% for GOCAL, while less than 20% for free CA. In a second step, OmpF was incorporated into GOCAL membranes, leading to the formation of OmpF-embedded GOCAL (abbreviated GOCAL-OmpF). The activity of GO inside GOCAL-OmpF increased up to 17 times in comparison with that inside GOCAL due to an increased glucose permeation across the liposome bilayer, without any leakage of GO or CA from the liposomes. The optimal system was estimated to contain on average five OmpF molecules per liposome. Finally, GOCAL-OmpF were covalently immobilized into chitosan gel beads. The performance of this novel biocatalyst (IGOCAL-OmpF) was examined by following the change in glucose conversion, as well as by following the remaining GO activity in successive 15-h air oxidations for repeated use at 40 degrees C in an airlift bioreactor. IGOCAL-OmpF showed higher reactivity and reusability than IGOL, as well as IGOL containing OmpF (IGOL-OmpF). The IGOCAL-OmpF gave about 80% of glucose conversion even when the catalyst was used repeatedly four times, while the corresponding conversions were about 60% and 20% for the IGOL and IGOL-OmpF, respectively. Due to the absence of CA, IGOL-OmpF was less stable and resulted in drastically inhibited GO.  相似文献   
76.
Follicular atresia, the degeneration of developing follicles, is always incident to normal oogenesis in both oviparous and viviparous animals. Photo- and electron-microscopic observation of degenerating follicles within developing ovaries taken from blood-fed Culex pipiens pallens mosquitoes showed gradual degradation of the internal structures including yolk granules in the oocyte. The epithelial cells, which sometimes incorporated yolk granules from the oocyte along with the shrinkage of the follicle, gradually lost their uniform columnar shape, while their integrity as a covering layer remained. In situ active caspase analysis detected active enzymes in these epithelial regions. In the latest stages of atresia where either the nurse cells or oocyte were lost, the follicle was mainly comprised of irregularly shaped epithelial cells, and some of these cells' nuclei contained condensed chromatin peripherally, one of the characteristics of apoptotic cells. Also terminaldeoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling treatment indicated that DNA fragmentation occurred in these follicles. It seems likely that in atretic follicles the epithelial cells survive to play key roles in the event, and then finally undergo their own apoptotic cell death so as to give the developmental site to the next follicle in the same ovariole.  相似文献   
77.
Thrombin and other proteinases exert vascular effects by activating the proteinase-activated receptors (PARs). The expression of PARs has been shown to be upregulated after balloon injury and in human arteriosclerosis. However, the relationship between the receptor upregulation and the alteration of vasomotor function remains to be elucidated. We herein demonstrated that the contractile responses to the PAR-1 and PAR-2 agonist were markedly enhanced in the rabbit femoral arteries after balloon injury. Neointimal thickening was established 4 wk after the injury. No histological change was observed in the sham operation, where the saphenous artery was ligated without any balloon injury. The contractile response to K(+) depolarization was significantly attenuated 1 wk after the injury and then partly recovered after 4 wk. Thrombin, PAR-1-activating peptide, trypsin, and PAR-2-activating peptide induced no significant contraction in the control. All these stimulants induced enhanced responses 1 wk after balloon injury. Such enhanced responses were seen 4 wk after the injury, except for thrombin. There was no change in the Ca(2+) sensitivity of the contractile apparatus as evaluated in the permeabilized preparations. PAR-1-activating peptide (100 mumol/l), but no other stimulants, induced an enhanced contraction in the sham operation. The expression of PAR-1 and PAR-2 slightly increased after the sham operation, whereas it markedly and significantly increased after balloon injury. Our observations suggest that balloon injury induced the receptor upregulation, thereby enhancing the contractile response before the establishment of vascular lesions. The local inflammation associated with the sham operation may also contribute to the receptor upregulation.  相似文献   
78.
The σ1 receptor (σ(1)R) regulates endoplasmic reticulum (ER)/mitochondrial interorganellar Ca(2+) mobilization through the inositol 1,4,5-trisphosphate receptor (IP(3)R). Here, we observed that expression of a novel splice variant of σ(1)R, termed short form σ(1)R (σ(1)SR), has a detrimental effect on mitochondrial energy production and cell survival. σ(1)SR mRNA lacks 47 ribonucleotides encoding exon 2, resulting in a frameshift and formation of a truncated receptor. σ(1)SR localizes primarily in the ER at perinuclear regions and forms a complex with σ(1)R but not with IP(3)R in the mitochondrion-associated ER membrane. Overexpression of both σ(1)R and the truncated isoform promotes mitochondrial elongation with increased ER mitochondrial contact surface. σ(1)R overexpression increases the efficiency of mitochondrial Ca(2+) uptake in response to IP(3)R-driven stimuli, whereas σ(1)SR overexpression reduces it. Most importantly, σ(1)R promotes ATP production via increased mitochondrial Ca(2+) uptake, promoting cell survival in the presence of ER stress. By contrast, σ(1)SR suppresses ATP production following ER stress, enhancing cell death. Taken together, the newly identified σ(1)SR isoform interferes with σ(1)R function relevant to mitochondrial energy production under ER stress conditions, promoting cellular apoptosis.  相似文献   
79.
Parkinson's disease (PD) patients frequently reveal deficit in cognitive functions during the early stage in PD. The dopaminergic neurotoxin, MPTP-induced neurodegeneration causes an injury of the basal ganglia and is associated with PD-like behaviors. In this study, we demonstrated that deficits in cognitive functions in MPTP-treated mice were associated with reduced calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and impaired long-term potentiation (LTP) induction in the hippocampal CA1 region. Mice were injected once a day for 5days with MPTP (25mg/kg i.p.). The impaired motor coordination was observed 1 or 2week after MPTP treatment as assessed by rota-rod and beam-walking tasks. In immunoblotting analyses, the levels of tyrosine hydroxylase protein and CaMKII autophosphorylation in the striatum were significantly decreased 1week after MPTP treatment. By contrast, deficits of cognitive functions were observed 3-4weeks after MPTP treatment as assessed by novel object recognition and passive avoidance tasks but not Y-maze task. Impaired LTP in the hippocampal CA1 region was also observed in MPTP-treated mice. Concomitant with impaired LTP induction, CaMKII autophosphorylation was significantly decreased 3weeks after MPTP treatment in the hippocampal CA1 region. Finally, the reduced CaMKII autophosphorylation was closely associated with reduced AMPA-type glutamate receptor subunit 1 (GluR1; Ser-831) phosphorylation in the hippocampal CA1 region of MPTP-treated mice. Taken together, decreased CaMKII activity with concomitant impaired LTP induction in the hippocampus likely account for the learning disability observed in MPTP-treated mice.  相似文献   
80.
Despite their self-sufficient ability to generate capped mRNAs from cytosolic DNA genomes, poxviruses must commandeer the critical eukaryotic translation initiation factor 4F (eIF4F) to recruit ribosomes. While eIF4F integrates signals to control translation, precisely how poxviruses manipulate the multisubunit eIF4F, composed of the cap-binding eIF4E and the RNA helicase eIF4A assembled onto an eIF4G platform, remains obscure. Here, we establish that the poxvirus infection of normal, primary human cells destroys the translational repressor eIF4E binding protein (4E-BP) and promotes eIF4E assembly into an active eIF4F complex bound to the cellular polyadenylate-binding protein (PABP). Stimulation of the eIF4G-associated kinase Mnk1 promotes eIF4E phosphorylation and enhances viral replication and protein synthesis. Remarkably, these eIF4F architectural alterations are accompanied by the concentration of eIF4E and eIF4G within cytosolic viral replication compartments surrounded by PABP. This demonstrates that poxvirus infection redistributes, assembles, and modifies core and associated components of eIF4F and concentrates them within discrete subcellular compartments. Furthermore, it suggests that the subcellular distribution of eIF4F components may potentiate the complex assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号