首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
  85篇
  2020年   1篇
  2019年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   7篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   8篇
  2004年   9篇
  2003年   7篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
51.
The sperm of the mussel Mytilus had hydrolytic activities against substrates for aminopeptidase. Acrosome reaction (AR) was suppressed in the presence of aminopeptidase substrate, Phe-4-methylcoumaryl-7-amide (MCA), and an aminopeptidase inhibitor, bestatin. Treatment of sperm with phosphatidylinositol-specific phospholipase C (PI-PLC) released aminopeptidase activity from sperm and suppressed AR. These results suggest that the enzyme is located on the sperm surface via glycosylphosphatidylinositol (GPI)-anchor and is involved in the AR. Immunoblot analysis showed that tyrosine residues of 40, 59, 68, and 72 kDa proteins were phosphorylated during induction of the AR. The 40 kDa protein was also recognized by anti-c-Src antibody by immunoblotting. The tyrosine phosphorylation of these proteins was inhibited when sperm were inseminated in the presence of Phe-MCA, and by PI-PLC treatment. Treatment of sperm with tyrosine kinase activator, 9,10-dimethyl-1,2-benzanthracene, induced AR, and its inhibitor, genistein, suppressed AR. These results suggest that tyrosine phosphorylation of 40, 59, 68, and 72 kDa proteins, induced by the interaction of GPI-anchored aminopeptidase with oocyte surface, triggers AR in Mytilus sperm.  相似文献   
52.
53.
54.
Insertion of magnesium into protoporphyrin IX by magnesium chelatase is a key step in the chlorophyll biosynthetic pathway, which takes place in plant chloroplasts. ATP hydrolysis by the CHLI subunit of magnesium chelatase is an essential component of this reaction, and the activity of this enzyme is a primary determinant of the rate of magnesium insertion into the chlorophyll molecule (tetrapyrrole ring). Higher plant CHLI contains highly conserved cysteine residues and was recently identified as a candidate protein in a proteomic screen of thioredoxin target proteins (Balmer, Y., Koller, A., del Val, G., Manieri, W., Schurmann, P., and Buchanan, B. B. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 370-375). To study the thioredoxin-dependent regulation of magnesium chelatase, we first investigated the effect of thioredoxin on the ATPase activity of CHLI1, a major isoform of CHLI in Arabidopsis thaliana. The ATPase activity of recombinant CHLI1 was found to be fully inactivated by oxidation and easily recovered by thioredoxin-assisted reduction, suggesting that CHLI1 is a target protein of thioredoxin. Moreover, we identified one crucial disulfide bond located in the C-terminal helical domain of CHLI1 protein, which may regulate the binding of the nucleotide to the N-terminal catalytic domain. The redox state of CHLI was also found to alter in a light-dependent manner in vivo. Moreover, we successfully observed stimulation of the magnesium chelatase activity in isolated chloroplasts by reduction. Our findings strongly suggest that chlorophyll biosynthesis is subject to chloroplast biogenesis regulation networks to coordinate them with the photosynthetic pathways in chloroplasts.  相似文献   
55.
During phosphate (Pi) starvation in plants, membrane phospholipid content decreases concomitantly with an increase in non-phosphorus glycolipids. Although several studies have indicated the involvement of phytohormones in various physiological changes upon Pi starvation, the regulation of Pi-starvation induced membrane lipid alteration remains unknown. Previously, we reported the response of type B monogalactosyl diacylglycerol synthase genes (atMGD2 and atMGD3) to Pi starvation, and suggested a role for these genes in galactolipid accumulation during Pi starvation. We now report our investigation of the regulatory mechanism for the response of atMGD2/3 and changes in membrane lipid composition to Pi starvation. Exogenous auxin activated atMGD2/3 expression during Pi starvation, whereas their expression was repressed by cytokinin treatment in the root. Moreover, auxin inhibitors and the axr4 aux1 double mutation in auxin signaling impaired the increase of atMGD2/3 expression during Pi starvation, showing that auxin is required for atMGD2/3 activation. The fact that hormonal effects during Pi starvation were also observed with regard to changes in membrane lipid composition demonstrates that both auxin and cytokinin are indeed involved in the dynamic changes in membrane lipids during Pi starvation. Phosphite is not metabolically available in plants; however, when we supplied phosphite to Pi-starved plants, the Pi-starvation response disappeared with respect to both atMGD2/3 expression and changes in membrane lipids. These results indicate that the observed global change in plant membranes during Pi starvation is not caused by Pi-starvation induced damage in plant cells but rather is strictly regulated by Pi signaling and auxin/cytokinin cross-talk.  相似文献   
56.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively) constitute the bulk of membrane lipids in plant chloroplasts. Mutant analyses in Arabidopsis have shown that these galactolipids are essential for chloroplast biogenesis and photoautotrophic growth. Moreover, these non-phosphorous lipids are proposed to participate in low-phosphate (Pi) adaptations. Under Pi-limited conditions, a drastic accumulation of DGDG occurs concomitantly with a large reduction in membrane phospholipids, suggesting that plants substitute DGDG for phospholipids during Pi starvation. Previously, we reported that among the three MGDG synthase genes ( MGD1 , MGD2 and MGD3 ), the type-B MGD2 and MGD3 are upregulated in parallel with DGDG synthase genes during Pi starvation. Here, we describe the identification and characterization of T-DNA insertional mutants of Arabidopsis type-B MGD genes. Under Pi-starved conditions, the mgd3-1 mutant showed a drastic reduction in DGDG accumulation, particularly in the root, indicating that MGD3 is the main isoform responsible for DGDG biosynthesis in Pi-starved roots. Moreover, in the roots of mgd2 mgd3 plants, Pi stress-induced accumulation of DGDG was almost fully abolished, showing that type-B MGD enzymes are essential for membrane lipid remodeling in Pi-starved roots. Reductions in fresh weight, root growth and photosynthetic performance were also observed in these mutants under Pi-starved conditions. These results demonstrate that Pi stress-induced membrane lipid remodeling is important in plant growth during Pi starvation. The widespread distribution of type-B MGD genes in land plants suggests that membrane lipid remodeling mediated by type-B MGD enzymes is a potent adaptation to Pi deficiency for land plants.  相似文献   
57.
In plants, chlorophylls (chlorophyll a and chlorophyll b) are the most abundant tetrapyrrole molecules and are essential for photosynthesis. The first committed step of chlorophyll biosynthesis is the insertion of Mg2+ into protoporphyrin IX, and thus subsequent steps of the biosynthesis are called the Mg branch. As the Mg branch in higher plants is complex, it was not until the last decade—after many years of intensive research—that most of the genes encoding the enzymes for the pathway were identified. Biochemical and molecular genetic analyses have certainly modified the classic metabolic map of tetrapyrrole biosynthesis, and only recently have the molecular mechanisms of regulatory pathways governing chlorophyll metabolism been elucidated. As a result, novel functions of tetrapyrroles and biosynthetic enzymes have been proposed. In this review, I summarize the recent findings on enzymes involved in the Mg branch, mainly in higher plants.  相似文献   
58.
Chlorophyllases (Chlases), cloned so far, contain a lipase motif with the active serine residue of the catalytic triad of triglyceride lipases. Inhibitors specific for the catalytic serine residue in serine hydrolases, which include lipases effectively inhibited the activity of the recombinant Chenopodium album Chlase (CaCLH). From this evidence we assumed that the catalytic mechanism of hydrolysis by Chlase might be similar to those of serine hydrolases that have a catalytic triad composed of serine, histidine and aspartic acid in their active site. Thus, we introduced mutations into the putative catalytic residue (Ser162) and conserved amino acid residues (histidine, aspartic acid and cysteine) to generate recombinant CaCLH mutants. The three amino acid residues (Ser162, Asp191 and His262) essential for Chlase activity were identified. These results indicate that Chlase is a serine hydrolase and, by analogy with a plausible catalytic mechanism of serine hydrolases, we proposed a mechanism for hydrolysis catalyzed by Chlase.  相似文献   
59.
To elucidate the mechanism of irradiance-dependent adjustments in the chlorophyll antenna size of photosynthesis, we addressed the regulation of expression of genes encoding a variety of chlorophyll biosynthesis enzymes and that of the Lhcb genes in the model organism Dunaliella salina. Among the chlorophyll biosynthesis enzymes tested, only the chlorophyll a oxygenase (CAO) gene responded to changes in the level of irradiance with substantial mRNA level and kinetics of change that were similar to those of the Lhcb genes. Evidence is presented for the operation of a cytosolic signal transduction pathway for the rapid (order of minutes) regulation of both CAO and Lhcb gene expression by irradiance. Inhibitor studies and transient activation of Ca2+-dependent kinase suggested phopholipase-C activation to Ca2+ release, and activation of a specific Ca2+/CaM-dependent protein kinase in this cytosolic signal transduction pathway. The redox state of the plastoquinone pool also serves to regulate CAO and Lhcb gene expression on a slower time scale (hours) and probably serves as a plastidic-origin signal that acts coordinately with the cytosolic signal transduction pathway. It is proposed that irradiance-dependent adjustments in the chlorophyll antenna size occur by coordinate regulation of CAO and Lhcb gene expression via two distinct signal transduction pathways in photosynthetic organisms.  相似文献   
60.
We previously found that a microdisruption of the plasma membrane evokes Ca(2+)-regulated exocytosis near the wound site, which is essential for membrane resealing. We demonstrate herein that repeated membrane disruption reveals long-term potentiation of Ca(2+)-regulated exocytosis in 3T3 fibroblasts, which is closely correlated with faster membrane resealing rates. This potentiation of exocytosis is cAMP-dependent protein kinase A dependent in the early stages (minutes), in the intermediate term (hours) requires protein synthesis, and for long term (24 h) depends on the activation of cAMP response element-binding protein (CREB). We were able to demonstrate that wounding cells activated CREB within 3.5 h. In all three phases, the increase in the amount of exocytosis was correlated with an increase in the rate of membrane resealing. However, a brief treatment with forskolin, which is effective for short-term potentiation and which could also activate CREB, was not sufficient to induce long-term potentiation of resealing. These results imply that long-term potentiation by CREB required activation by another, cAMP-independent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号